Яндекс.Метрика

8 (495) 724-93-09

lab.texnika@ya.ru

Цифровой люксметр. Mastech MS6610

Цифровой фотометр Mastech MS6610 измеритель, освещенности, фотометр, Цифровой, люксметр, Mastech, MS6610

 

Измеритель освещенности (фотометр)  — измерительный прибор, позволяющий измерять освещенность от различных источников освещения. Фотометр состоит из датчика освещенности (фотодетектора) и счетного устройства.

В приборе полученные данные можно зафиксировать с помощью функции DATA HOLD.   Цифровой фотометр Mastech MS6610 имеет сертификат РосТеста.

Технические характеристики измерителя освещенности (фотометра) Mastech MS6610

Параметры Mastech MS6610
Разрядность ЖК дисплея 1999

Диапазон измерений освещенности, лк:

  • 0 — 2000 (±5%);
  • 2000 — 19900 (±0,5%);
  • 20000 — 50000 (±0,5%)

Длина кабеля от датчика до счетного устройства, м ~ 1,5

Габаритные размеры:

  • Фотодетектор 83х52х20,5
  • Счетное устройство 125,5х72х27

Вес, грамм (с батареей) 180

Питание 9В (тип 6F22, «Крона»)

Сервис Фиксация результатов измерений DATA HOLD

Поверхностное натяжение в жидкости. ФПТ1-14

Установка лабораторная

Поверхностное натяжение в жидкости.

ФПТ1-14

физика, фпт, фпт1-14, молекулярная физика

                              Установка по молекулярной физике предназначена для проведения лабораторной работы «Измерение силы поверхностного натяжения жидкости методом отрыва кольца» по курсу «Молекулярная физика и термодинамика» в высших учебных заведениях.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

    • Материал кольца алюминий
    • Размеры кольца: диаметр внешний, мм 58± 0,1 диаметр внутренний, мм 56± 0,1
    • Точность измерения величины силы натяжения, % 3± 0,01 г.
    • Максимальная величина измеряемой силы натяжения, г 199,99 г.
    • Питание: 2 гальванических элемента 1,5 В, тип ААА.
    • Габаритные размеры, мм, : 360х260х400
    • Масса установки, кг не более 6

 

ПОРЯДОК РАБОТЫ

Краткие сведения из теории

Жидкости и газы по своим механическим свойствам очень похожи.
Поэтому их часто рассматривают и описывают одинаково, считая сплошными средами, не имеющими структуры.
Но если обратиться к молекулярному устройству жидкостей и газов, то станут очевидными различия, связанные с разным положением молекул в них. В жидкостях расстояние между молекулами гораздо меньше, чем в газах, молекулы «упакованы» значительно плотнее, поэтому имеют место некоторые особенности. Одна из таких особенностей – явление поверхностного натяжения, которое рассматривается в данной лабораторной работе.
Явление поверхностного натяжения заключается в стремлении жидкости сократить площадь своей поверхности. Это явление можно объяснить, основываясь на представлениях о молекулярном строении жидкостей.

На каждую молекулу жидкости со стороны других молекул действуют силы гравитационного притяжения:

F= G·m1·m2/R2

Где G = 6,6725 10-11 м3/(кг с2) – гравитационная постоянная, m1, m2 –массы взаимодействующих молекул; R – расстояние между центрами их масс.

Как видно из (1), силы притяжения между молекулами очень быстро убывают с расстоянием (обратно пропорционально квадрату расстояния между ними). Поэтому, начиная с некоторого «граничного» расстояния этими силами можно пренебречь. Это расстояние имеет величину порядка 10-9 м и называется радиусом молекулярного действия r. Сфера радиуса r называется сферой молекулярного действия.
Итак, каждая молекула подвергается действию сил притяжения со стороны молекул, входящих в сферу молекулярного действия. Но молекулы, находящиеся за пределами этой сферы, не действуют на рассматриваемую молекулу (точнее, действием сил притяжения к ним можно пренебречь). Выделим некоторую молекулу жидкости, окруженную со всех сторон другими молекулами. Силы, действующие на нее, сосредоточатся внутри сферы молекулярного действия Эти силы направлены в разные стороны. А так как количество молекул внутри сферы молекулярного действия очень велико, то силы притяжения рассматриваемой молекулы к ним в целом скомпенсированы, и равнодействующая всех этих сил равна нулю (в этом можно легко убедиться возьмите любую молекулу внутри сферы молекулярного действия и найдите вторую молекулу, расположенную на таком же расстоянии, но с противоположной стороны от рассматриваемой молекулы).

Таким образом, молекула, находящаяся в объеме жидкости не испытывает на себе воздействия со стороны других молекул, так как их суммарное воздействие на рассматриваемую молекулу скомпенсировано.
Совершенно иная картина по сравнению с глубиной жидкости наблюдается на её поверхности. Здесь на любую рассматриваемую молекулу к не будут действовать силы со стороны молекул жидкости, находящихся внутри сферы молекулярного действия. Коренное различие заключается в том, что жидкость находится только с одной стороны от поверхности. С другой стороны находится газ или вакуум. Как уже было отмечено выше, расстояние между молекулами в газе значительно (на несколько порядков) превышает расстояние между молекулами в жидкости. Это
означает, что количество молекул газа, находящихся вблизи границы раздела жидкость – газ и могущих притягивать рассматриваемую молекул, несущественно и их воздействием мы вправе пренебречь. Следовательно, сфера молекулярного действия превращается в полусферу, и равнодействующая молекулярных сил уже не будет равна нулю.

Для того чтобы найти равнодействующую всех сил, действующих на рассматриваемую молекулу на поверхности жидкости, необходимо сложить силы, с которыми рассматриваемая молекула притягивается к каждой молекуле, входящей в сферу молекулярного действия. Для этого каждую такую силу следует представить в виде двух ортогональных составляющих: нормальную к поверхности жидкости и касательную к ней.

 

Лабораторная установка «Изучение дифракции света». ФПВ-05-3/5-1

 

УСТАНОВКА ДЛЯ ПРОВЕДЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

«Изучение дисперсии стеклянной призмы и дифракционной решетки»

ФПВ05-3/5-1

фпв, fpv

ЦЕНА: 90 000 рублей

ОПИСАНИЕ Применение для изучения работы «Изучение дифракции света».

Данное описание содержит технические характеристики  и принципа действия установки, указания по эксплуатации и другие сведения, необходимые для обеспечения полного использования ее технических и педагогических возможностей.

fpv,фпв

. S1─направление луча, падающего на призму,
S2─ направление луча, вышедшего из призмы,
А1─направление нормали к грани, на которую падает луч S1,
А2─ направление нормали к грани, из которой выходит луч S2,
i1, i2 — углы падения,
r1, r2 — углы преломления на границах раздела АС и АВ соответственно,
φ — преломляющий угол призмы,
δ — угол отклонения выходящего из призмы луча относительно первоначального направления.

НАЗНАЧЕНИЕ

  • Установка ФПВ-05-3-1 предназначена для проведения лабораторных работ по курсу физики раздел «Оптика» для инженерно-технических специальностей высшей школы.
  • Установка дает возможность изучить явление дифракции Фраунгофера на щелях, определить основные характеристики дифракционной решетки.
  • При проведении лабораторных работ установка может использоваться как самостоятельно , так и в составе лаборатории «Оптика»
  • Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях при температуре окружающей среды от +10 С до +35 С и относительной влажности воздуха до 80 %.
fpv, фпв

ФПВ-05-3/3-1 1 — ртутная лампа, , 4 — предметный столик, 5- призма, 6 — зрительная труба, 7 — лимб, 8 — глаз наблюдателя.

 

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Установка содержит: Осветитель лазерный с регулируемой яркостью 1 шт. Щель одиночная 1 шт. Щель тройная 1 шт. Экран со шкалой 1 шт. Фоторезистор подвижный со шкалой 1 шт. Прибор для измерения фототока 1 шт. Решетка дифракционная, лин/мм, 50, 75, 300, 600 1 шт. Электропитание установки от сети переменного тока частотой , Гц 50 + — 1 напряжением, В 220 (+10 %;-15 %) Потребляемая мощность, В*А, не более 30 Габаритные размеры, мм, не более 1000 х200 х 300 Масса, кг, не более 10 Наработка на отказ, часов, не менее 500 Средний срок службы, лет, не менее 5

 

Изучение дисперсии дифракционной решетки

Плоская прозрачная дифракционная решетка представляет собой стеклянную полированную пластину, на которую с помощью алмазного резца нанесены при помощи специальной машины параллельные одинаковые штрихи, расположенные на строго одинаковых расстояниях друг от друга.

Действие дифракционной решетки можно понять, рассматривая падение плоской монохроматической волны на регулярную периодическую структуру, состоящую из чередующихся параллельных друг другу щелей одинаковой ширины b, расположенных на одинаковом расстоянии а друг от друга. Сумма ширины щели b и ширины штриха а называется постоянной или периодом дифракционной решетки d.

fpv, фпв

   

 Период решетки связан с числом штрихов на единицу длины следующим соотношением:

         На рис. 6.1 представлен ход лучей через решетку согласно схеме дифракции Фраунгофера, то есть когда на решетку падает плоская волна, а точка наблюдения практически находится на бесконечности.     Если на дифракционную решетку 1 падает плоская моно-хроматическая волна, то в соответствии с принципом Гюйгенса — Френеля точки щели являются источниками когерентных волн. Вследствие дифракции эти когерентные волны распространяются далее под углами дифракции j1, j2, j3,… jm и, пройдя линзу 2, дают интерференционную картину, интенсивность которой   определяется суперпозицией волн в плоскости…(см. технический паспорт изделия)

Всякая линза обладает тем свойством, что она не создает дополнительной разности фаз между лучами, собираемыми линзой в одной и той же точке изображения. Иными словами, оптические длины пути для этих лучей одинаковы.   Амплитуды всех интерферирующих волн составляют арифметическую прогрессию.

         Распределение интенсивности в дифракционной картине волн на экране зависит от интенсивности волн от каждой щели и от их взаимной интерференции. Разность хода D лучей от соседних щелей равна  

         Интенсивность дифрагированного света максимальна для таких углов jm , для которых волны, приходящие в точку наблюдения от всех щелей решетки оказываются в фазе, что определяется условием( см. технический паспорт изделия):

Условие минимума интенсивности света выражается в виде (см. технический паспорт изделия):

 Точная теория дифракции учитывает как интерференцию волн, приходящих от разных щелей, так и дифракцию от каждой щели. Как показывает расчет, интенсивность I света, распространяющегося под углом j к нормали, равна(см. технический паспорт изделия):

       Анализ выражения (6.4) показывает, что при большом числе щелей N свет, прошедший через решетку, распространяется по ряду резко ограниченных направлений, определяемых соотношением (6.2). Зависимость интенсивности света от угла наблюдения представлена на рис. 6.2. Как следует из (6.2), углы, при которых наблюдаются световые максимумы, зависят от длины волны l. Дифракционная решетка представляет собой, таким образом, спектральный прибор.

fpv, фпв

Если на дифракционную решетку падает свет cложного спектрального состава, то после решетки образуется спектр, причем фиолетовые лучи отклоняются решеткой меньше, чем красные. Входящая в (6.2) величина m носит название порядка спектра. При максимумы интенсивности для всех длин волн располагаются при и накладываются друг на друга.

При освещении белым светом нулевой максимум, в отличии от всех прочих, оказывается неокрашенным. Спектры первого, второго и т. д. порядков располагаются симметрично по обе стороны от нулевого максимума.

Угловая дисперсия D характеризует угловое расстояние между близкими спектральными линиями: (см. технический паспорт изделия)

 Дисперсия возрастает с увеличением порядка спектра. На опыте дисперсию определяют путем измерения углового расстояния  между двумя близкими спектральными линиями с известной разностью длин волн (например, между желтой и сине-зеленой линиями ртути).

— Установите зрительную трубу так, чтобы изображение щели совпадало с одной из нитей окуляра;

— дифракционную решетку в держателе установить перпендикулярно оси щель – окуляр. нескольких порядков спектральных линий;

— Определите для соседних спектральных линий;

— рассчитайте дисперсию для разных порядков (m), используя формулу (см. технический паспорт изделия).

Результаты занести в отчет по работе.

По окончании работы отключить установку от сети.

Режим работы установки прерывистый — через каждые 2 часа работы делается перерыв на 10-15 мин.

 

Определение фокусного расстояния и положения главных точек сложного объектива. ФПВ-05-1-7

Определение фокусного расстояния и положения главных точек сложного объектива.

Описание
Установка предназначена для изучения методов определения фокусного расстояния и главных точек сложной оптической системы.

Установка состоит из осветителя (белого света) с регулируемым источником питания, сетки, собирательной линзы, модели объектива, зрительной трубы и экрана с миллиметровой шкалой в виде креста, устанавливаемых в рейтерах на оптической скамье.

На поверхности скамьи нанесена миллиметровая шкала.

Предметом для построения изображения является сетка, которая встроенна в осветитель.

Модель объектива предназначена для моделирования телеобъектива и представляет собой направляющую с закрепленной оптической системой линз, которая имеет возможносить перемещаться при помощи винта. Направляющая закреплена на кронштейне и может поворачиваться на небольшой угол. На задней и передней сторонах направляющей, нанесена шкала предназначенная для отсчета расстояния от линзы до оси поворота.

Сложная оптическая линзово-призменная система зрительной трубы состоит из четырнадцати элементов. Оптические элементы имеют специальное многослойное просветление. С помощью выше перечисленного обеспечивается изображение высокого качества в центре и по всему полю.
Труба применяется при построении и юстировке оптических систем.

Технические характеристики:

Длина оптической скамьи, мм  1400
Высота оптической оси, над опорной плоскостью скамьи, мм 230
Цена деления линейки скамьи, мм 1
Цена деления шкалы сетки , мм 0,2
Расстояние между передней и зад­ней линзами объектива, мм 104
Угол поворота кронштейна с линзами град., не менее 5
Питание осуществляется от сети переменного тока 220В 50Гц
Потребляемая мощность, ВА, не более 35
Габаритные размеры установки мм, не более 1500х500х500
Общая масса, кг, не более 15

Установка лабораторная «Определение фокусного расстояния тонкой рассеивающей линзы». ФПВ-05-1-2

Определение фокусного расстояния тонкой рассеивающей линзы.

Установка ФПВ-05-1-2 предназначена для изучения методов определения фокусного расстояния рассеивающей линзы.фпв, физика, оптика, ОПРЕДЕЛЕНИЕ, ФОКУСНОГО РАССТОЯНИЯ, ТОНКОЙ, СОБИРАТЕЛЬНОЙ ЛИНЗЫ

Установка состоит из источника белого света с регулируемым источником питания, сетки, рассеивающей и собирательной линз и экрана с миллиметровой шкалой в виде креста, устанавливаемых в рейтерах на оптической скамье.

На боковой поверхности скамьи нанесена миллиметровая шкала.

Предметом для построения изображения является сетка, которая устанавливается на источнике света.

Технические характеристики:

  • Длина оптической скамьи, мм не менее 1200
  • Высота оптической оси, над опорной плоскостью скамьи, мм 230
  • Цена деления линейки скамьи, мм 1
  • Цена деления шкалы сетки , мм 0,2
  • Габаритные размеры установки мм, не более 1300х300х300
  • Питание осуществляется от сети переменного тока 220В 50Гц
  • Потребляемая мощность, ВА, не более 35Общая масса, кг, не более 8

УСТАНОВКА ЛАБОРАТОРНАЯ «ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА». ФПВ-05-3-3

фпв, дифракцияИзучение дифракции Фраунгофера на щелях.

Установка ФПВ05-3-3 предназначена для проведения лабораторных работ по курсу физики раздел «Оптика» для инженерно-технических специальностей высшей школы.

Установка предназначена для исследования явление дифракции на одной щели и на двойной щели. Установка позволяет определить параметры щелей, а именно ширину щелей и расстояние между их центрами.

 При проведении лабораторных работ установка может использоваться как самостоятельно , так и в составе лаборатории  Оптика 

 Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях при температуре окружающей среды от +10 ЦЕЛ до +35 ЦЕЛ и относительной влажности воздуха до 80 %.

Цель работы: исследование дифракционной картины от щели, системы щелей и дифракционной решетки.

Технические данные:

Установка содержит:
Осветитель лазерный с регулируемой яркостью 1 шт.
Щель одиночная 1 шт.
Щель тройная 1 шт.
Экран со шкалой 1 шт.
Фоторезистор подвижный со шкалой 1 шт.
Прибор для измерения фототока 1 шт.
Решетка дифракционная, лин/мм, 50, 75, 300, 600 1 шт.
Электропитание установки от сети переменного тока
частотой , Гц 50 + — 1
напряжением, В 220 (+10 %;-15 %)
Потребляемая мощность, В*А 30
Габаритные размеры, мм  1000 х200 х 300
Масса 10 Кг.

Наработка на отказ, часов 500
 Средний срок службы, лет  5

Комплектность:

Установка для проведения лабораторной работы «Изучение дифракции света от одной и двух щелей». ФПВ-05-3-3 

 

Ампервольтметр демонстрационный стрелочный с гальванометром.

Ампервольтметр демонстрационный с гальванометром.

 

В наличии.                                                                                                                                                                                                                                                                                     ЦЕНА: 5600 рублей с НДС.


ампервольтметр, гальванометр, демонстрационный, стрелочный, амперметр, вольтметр

Описание:

Прибор предназначен для использования в общеобразовательных учреждениях на уроках физики, для постановки демонстрационных опытов при изучении раздела «Электричество». Устройство прибора позволяет использовать его как гальванометр, ампервольтметр, гальванометр демонстрационный.

амперметр, вольтметр, гальванометр, демонстрационный, школа, физика,

Амперметр (ампервольтметр) постоянного тока демонстрационный учебный, в дальнейшем прибор, предназначен для измерения напряжения постоянного тока при изучении ряда разделов физики, химии и т.д. в школах, колледжах, ВУЗах, университетах. Прибор является демонстрационным, что позволяет использовать его для демонстрации измерений широкому кругу обучающихся.

Характеристики изделия

Демонстрационный электрический счетчик предназначен для измерения величин постоянного тока (напряжения и сопротивления) при постановке демонстрационных опытов. Представляет собой прибор магнитоэлектрической системы, содержащий 2 шкалы с двойной оцифровкой.

Обе шкалы прибора нанесены на основание на передней и задней . По одной оцифровке шкалы, расположенной на лицевой стороне, нулевая отметка расположена справа, а отметка «~» (бесконечность) слева.

Шкала резко неравномерна и сильно сжата в левой части. Эта шкала показывает сопротивление в цепи.

По другой оцифровке – нулевая отметка расположена посередине. Диапазон шкалы от -100 до +100.

Эта шкала используется при работе в режиме гальванометра.

На оборотной стороне прибора находится шкала с двойной оцифровкой для измерения напряжения в цепи.

Верхний предел шкалы составляет от 0 до 10В, нижний предел – от 0 до 5В. Механизм прибора находится в пластмассовый корпус.

На лицевой стороне прибора с левой стороны имеется четыре комбинированных гнезда – клеммы, для подключения прибора в сеть.

С задней стороны расположен переключатель, с помощью которого прибор переключается в режим гальванометра, ампервольтметра и регулятор сопротивления.

Технические характеристики:

 Индукция магнитного поля в центре катушки, Тл (Гс) 1,8*10-4 (1,8);

Электросопротивление, Ом 2,0;
Наибольшая сила тока, А. 0,5;
Количество витков 32;
Диаметр провода, мм. 0,355.
Габаритные размеры:
Диаметр, мм. 110;
Высота, мм. 135;
Масса, г. до 1000.
Схемаамперметр, вольтметр, демонстрационный, стрелочный
Схема, ампервольтметр, гальванометр

Лабораторная установка «Определение коэффициента вязкости воздуха». ФПТ1-1н

УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЯЗКОСТИ ВОЗДУХА

НАЗНАЧЕНИЕмолекулярная, физика, фпт, вязкость, воздуха

           Установка ФПТ1-1н предназначена для проведения лабораторной работы «Определение коэффициента вязкости воздуха»

по курсу «Молекулярная физика и термодинамика» в высших учебных заведениях.

Установка предназначена для эксплуатации в закрытых помещениях при температуре окружающего воздуха от +10 0С до +35 0С и относительной влажности не более 80%.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

  • Максимальный расход воздуха. см3/мин, не более 6;
  • Объем ресивера, см3 3000;
  •  Максимально-допустимая разность давления (ΔР)на концах капилляра кПа 4,0;
  • Диаметр капилляра, мм, 0,8±0,05;
  • Длина капилляров, мм 100;
  • Время непрерывной работы, час. не более 6;
  • Питание установки: сеть 220 В ±10% 50 Гц;
  • Потребляемая мощность, Вт не более 15;
  • Габаритные размеры, мм, не более: 290х220х220;
  • Масса установки, кг не более 5.

 КОМПЛЕКТНОСТЬ

Установка ФПТ1-1н — 1 шт.Определение, коэффициента, вязкости, воздуха

Паспорт — 1 шт.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ
Установка «Определение коэффициента вязкости воздуха и исследование зависимости объема воздуха, протекающего через капилляр, от размеров капилляра» представляет собой моноблочную настольную конструкцию, которая включает: нагнетатель воздуха, объём воздуха (ресивер), датчик и измеритель давления (1), капилляр (2) и измеритель расхода воздуха — ротаметр (3). Внешний вид установки показан на ФОТО.

Пневмосхема установки изображена на передней панели.
На передней панели, кроме этого, расположен переключатель режима работы компрессора (4).

Величину расхода воздуха регулируют ручкой (5), а отсчет расхода – по шкале, нанесенной на стеклянной трубке ротаметра (6). Деления шкалы ротаметра имеют значения от 0 до 100.

Перевод значений шкалы ротаметра в единицы расхода (см3./мин.) производится по графику (7), расположенном на верхней крышке корпуса.

ВНИМАНИЕ: В паспорте на Ротаметр была произведена ошибка, а именно — неоднозначного написания параметра. НАДО СЧИТАТЬ : не за минуту,  а за  литр за час. (м. график ниже).

ротаметр, фпт1-1, фпт, молекулярная физика, лабораторная установка

Установка демонстрационная «Катушки Гельмгольца». ФДЭ-022М

Демонстрационная установка кольца Гельмгольца  ФДЭ-022м

учебная техника

фдэ-22

          Установка предназначена для проведения демонстраций на лекциях по курсу «Физика», раздел «Электричество и магнетизм» и позволяет получать постоянные и переменные магнитные поля разной величины и направления. Установка состоит из двух плоских одинаковых катушек расположенных параллельно друг другу так, что оси их совпадают. Считается, что по середине между катушками вблизи оси симметрии магнитное поле создаваемое катушками является однородным с достаточной степенью точности. Между катушками находится подъемный столик для размещения демонстрационных элементов.                                      

                                     Катушки подключаются к блоку управления, на котором находятся переключатель режима работы (постоянный ток – переменный ток), переключатель полярности тока и индикатор, показывающий величину тока протекающего через катушки.

 

Данная установка может использоваться в следующих опытах:

  • действие магнитного поля на проводник с током;
  • контур с током в однородном магнитном поле;
  • контур с током в неоднородном магнитном поле;
  • явление электромагнитной индукции;
  • модель атома в магнитном поле.

Технические характеристики:

Питание от сети сменного тока: 220 В, 50 Гц

Размер столика 160*160

Величина магнитной индукции постоянного магнитного поля создаваемого катушками, не менее, мТл 0,6

Габаритные размеры, мм:

Катушек 510х280х450

Блока управления 260х100х220

Масса установки 15 кг.

 

Лабораторная установка для определения коэффициента теплопроводности воздуха. ФПТ1-3

Установка входит в комплект оборудования учебной лаборатории

«Молекулярная физика и термодинамика»

и предназначена для измерения теплопроводности воздуха.

УСТАНОВКА, ЛАБОРАТОРНАЯ, КОЭФФИЦИЕНТ, ТЕПЛОПРОВОДНОСТИ ВОЗДУХА,ФПТ1-3 Установка ФПТ1-3 может применяться для проведения лабораторных работ

по курсу «Физика» раздел «Молекулярная физика и термодинамика» в высших учебных заведениях.
Установка ФПТ1-3 предназначена для эксплуатации при температуре окружающего воздуха от +100С до +350С и относительной влажности не более 80%.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Материал нити вольфрам

Сопротивление вольфрамовой нити при 20 град. Цельсия, Ом 24±1

Диаметр вольфрамовой нити, мм 0,1

Диаметры медной трубки , мм

  • внутренний 12
  • наружный 15
  • Сопротивление эталонного резистора, Ом 1;
  • Диапазон регулировки тока через нить, мА 0,1 — 200;
  • Погрешность определения времени секундомером, %, не более 5;
  • Питание установки: сеть 220 В ±10% 50 Гц;
  • Потребляемая мощность, Вт не более 30;
  • Габаритные размеры, мм, не более: 310х250х300;
  • Масса установки, кг не более 6.

УСТАНОВКА, ЛАБОРАТОРНАЯ, СТЕНД, ОПРЕДЕЛЕНИЯ, КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ВОЗДУХА, ФПТ1-3

КОМПЛЕКТНОСТЬ

Установка ФПТ1-3 — 1 шт.

Кабель — 1 шт.

Паспорт — 1 шт.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Установка «Определение коэффициента теплопроводности воздуха» представляет собой настольную конструкцию, которая включает: стойку с рабочим элементом 1 и блок с источниками питания 2. Внешний вид установки показан на рис. 1.

Рабочий элемент установки представляет собой тонкостенную медную трубку 3, заполненную воздухом, вдоль оси которой натянута вольфрамовая нить . Температура трубки в ходе эксперимента поддерживается постоянной, благодаря циркуляции воздуха между трубкой и кожухом стойки 1. Температура воздуха вокруг трубки измеряется датчиком температуры 10 и регистрируется цифровым термометром 5. Для измерения температуры вольфрамовой нити косвенным методом используется цифровой милливольтметр 4. В нижней части стойки находится переключатель режима измерений 6. Для ускоренного охлаждения установки после окончания лабораторной работы имеется вентилятор 7.

Блок 2 содержит источники питания для измерительных приборов и регулируемый стабилизатор тока, протекающего через вольфрамовую нить. На передней панели блока расположена ручка регулятора тока 8, На задней панели блока расположены: переключатель режима работы вентилятора 7, предохранители, выключатель сети, и клемма заземления установки. Для соединения блока со стойкой служит кабель с разъёмами на концах.

ПОИСК ПО САЙТУ
Все страницы
Вверх
Яндекс.Метрика © 2020    Компания ООО "УЧЕБНАЯ ТЕХНИКА". ИНН 7724306437 Телефон: +7 (495) 724-93-09 E-mail: Lab.texnika@yandex.ru 115573 г. Москва, ул. Ореховый бульвар дом 22   //    Войти
Paste your AdWords Remarketing code here