Яндекс.Метрика

8 (495) 724-93-09

lab.texnika@ya.ru

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ СПЕКТРА АТОМА ВОДОРОДА. ФПК-09

 

ИЗУЧЕНИЯ СПЕКТРА АТОМА ВОДОРОДА

Установка лабораторная позволяет выполнять демонстрационные  исследования

 спектра излучения нагретого газа водорода и нахождение постоянной Ридберга.

Установка позволяет наблюдать линейчатый спектр атома водорода (серию Бальмера).водорода, фпк, газа, водорода, спектрометр, спектроскоп, Бальмера, Ридберга, постоянной,

Установка состоит из двух блоков: излучателя и монохроматора, которые установлены на штативах. Блок излучателя содержит лампу, заполненную водородом, устройство ее питания и узел юстировки. Малогабаритный универсальный монохроматор предназначен для выделения и исследования монохроматического излучения в спектральном диапазоне от 2000 до 8000 ангстрем.

* Установка может поставляться в комплекте с монохроматором либо спектрометром.

Установка предназначена для исследования спектра излучения водорода.

Установка позволяет производить разложение излучения атомарного водорода в линейчатый спектр, наблюдение спектральных линий и измерение их длин волн при помощи спектрального аппарата (монохроматора).фпк09

Установка применяется для проведения лабораторных работ по курсу «Общая физика», раздел «Квантовая физика».

При проведении лабораторных работ установка может использоваться как самостоятельно, так и в составе лаборатории «Квантовая физика».

Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях при температуре окружающей среды от 283 K до 308 K и относительной влажности воздуха до 80 % при температуре 298 К и атмосферном давлении от 84,4 до 106,7 кПа

 

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Количество спектральных линий атомарного водорода, наблюдаемых при помощи монохроматора 4

Примечание: Допускается наличие наблюдаемых спектральных линий молекулярного спектра водорода с незначительной яркостью.

Питание установки осуществляется от сети переменного тока:

  • Частотой, Гц 50
  • Напряжением, В 220
  • фпк 09Потребляемая мощность, ВА 100

Габаритные размеры, мм:
Объект исследования 250 х 150 х 270
Спектрометра (либо монохроматор) — согласно документации
Масса объекта исследования (облучателя), кг  5
Средний срок службы, лет, не менее 5
Наработка на отказ, часов, не менее 1000 (без учета замен водородной лампы)

ИЗУЧЕНИЯ СПЕКТРА АТОМА ВОДОРОДА

Габаритные размеры, мм:

Крепления составных частей на оптической скамье

Изучение спектра атома водорода — состоят из осветителя, спектрометра (или монохроматора) и оптической скамьи.

 квантовая, физика, лабораторная, установка, изучение, атома, водорода

Сборка установок ФПК 09

Для крепления составных частей на оптической скамье используются рейтер.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Установка состоит из объекта исследования (излучателя) устройства измерительного, в качестве которого применен серийно выпускаемый спектрометр (монохроматор).

Спектрометр и объект исследования устанавливаются на оптической скамье с помощью рейтеров и стоек и закрепляются на ней.

Объект исследования (излучатель) конструктивно выполнен в виде сборного корпуса, в котором установлены водородная лампа, источник ее питания и узел юстировки. Блок питания служит для получения высокого напряжения, необходимого для питания лампы и ограничения разрядного тока через нее. Юстировочный узел предназначен для юстировки направления излучения лампы относительно входного окна монохроматора (щели спектрометра).
На боковой стенке излучателя расположено выходное окно для выхода излучения, защищенное блендой.
При использовании в составе установки учебного спектрометра СМу-1 для его калибровки используется неоновая лампа, которая для этой цели вставляется в отверстие бленды излучателя.

На задней панели излучателя размещены: выключатель СЕТЬ с индикатором включения сети и отверстие для доступа к винту юстировки лампы в горизонтальной плоскости.
На основании корпуса расположены клемма заземления, держатели предохранителей, сетевой шнур с вилкой.К нему прикреплена также стойка для установки излучателя на рейтер.

  

ТАК ЖЕ МОЖНО ПОСМОТРЕТЬ ЛАБОРАТОРНЫЕ УСТАНОВКИ: ФПК-01, ФПК-02, ФПК-03, ФПК-05, ФПК-06, ФПК-07, ФПК-08, ФПК-10, ФПК-11, ФПК-12, ФПК-13, ФПК-14, ФПК-15, ФПК-16. 

УСТАНОВКА ЛАБОРАТОРНАЯ «ЭФФЕКТ ЗЕЕМАНА». ФПК-14.

эффект Зеемана, установка, квантовая физика, типовой комплект учебного оборудования, фпк, фпк-14

На оптической скамье (1) расположены (в порядке от электромагнита(2): объектив с ирисовой диафрагмой (6), Интерферометр (Эталон) Фабри-Перо (7), поляризатор (8), линза с фокусным расстоянием 280 мм (9),Линза с сеткой для измерения интерференционных колец (10) и веб- камера (11).

ЭФФЕКТ ЗЕЕМАНА

Лабораторная установка предназначена для проведения лабораторных работ по курсу «Квантовая физика», «Ядерная физика» для инженерно-технических специальностей высшей школы.

Установка ФПК-14 позволяет:

  • Исследовать явление эффекта Зеемана, путем наблюдения расщепление спектральных линий и энергетических уровней атомов кадмия под действием магнитного поля;
  • Измерения зависимости энергии возбужденного атома кадмия от величины магнитного поля для продольного и поперечного эффекта.

 

* может использоваться как самостоятельно, так и в составе лаборатории » Квантовая физика «

Комплектность лабораторной установки «Эффект Зеемана» ФПК-14:

Установка для изучения эффекта Земана в составе:
1. Скамья оптическая — 1 шт.
2. Видеокамера — 1 шт.
3. Экран с сеткой (цена деления 0,2 мм) -1 шт
4. Линза f=+50 мм — 1 шт.
5. Линза f=+250 мм — 1 шт.
6. Поляризатор — 1 шт.
7. Эталон Фабри-Перо — 1 шт.
8. Линза f=+50 мм со светофильтром и ирисовой диафрагмой — 1 шт.
9. Электромагнит со спектральной лампой — 1 шт.
10. Блок питания — 1 шт.
11. Шнур для подключения катушек электромагнита — 1 шт.

Паспорт — 1 шт.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

Пределы установки тока в катушках электромагнита:

-для одной катушки, А, 1,6 -5,5

— для двух параллельных катушек, А 7,5 — 11

Длина оптической скамьи, мм. 1000 ±5

Количество подвижных рейтеров 6

Диапазон изменения напряжения питания катушек

электромагнита, В, не менее 8,5 – 26,0

 Мощность спектральной кадмиевой лампы, Вт 15

 Максимальная величина индукции магнитного поля между

полюсами электромагнита, Тл, не менее 1, 1

Интерфейс видеокамеры USB 2,0

Питание установки сеть 220 В 50 Гц.

Габариты установки, мм, не более:

Оптической скамьи 1000 х 200 х 300

Электромагита с поворотным столиком 300 х 200 х 350

Блока питания 300 х 250 х 170

Суммарная масса установки, кг, не более 40

Наработка на отказ, час, не менее 1000

 Средний срок службы, лет, не менее 5

Учитывая наличие в спектре неона большого количества красных линий (см. рис. ), в установке измерения проводятся на желтой линии 585,9 нм. Красная часть спектра отрезается желто-зеленым светофильтром, присоединенным к интерферометру Фабри-Перо. При этом сине-зеленая часть спектра неона подавлена частотной характеристикой интерферометра в силу своей удаленности. В результате интерференционная картина имеет хорошую четкость и позволяет наблюдать эффект Зеемана, как прямой (вдоль направления линий магнитного поля), так и поперечный.

Для наблюдения прямого эффекта Зеемана в полюсах электромагнита сделаны отверстия, а для наблюдения поперечного эффекта Электромагнит имеет возможность поворачиваться вокруг оси на 90 градусов.неон, 585,9 нм, эффект зеемана, фпк-14

 

УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ ДЛИНЫ ПРОБЕГА АЛЬФА-ЧАСТИЦ И БЕТА-РАДИОАКТИВНОСТИ. ФПК-03м


фпк, квантовая физикадля определения длины пробега альфа-частиц и бета-радиоактивности

позволяет воспроизводить классический опыт Франка и Герца по определению резонансного потенциала и измерять энергию резонансного уровня. Для исследования зависимости анодного тока лампового газонаполненного триода от напряжения сетка-катод (вольт-амперную характеристику) с максимумами и минимумами, характерными для опыта Франка и Герца, используется осциллограф любого типа.

Технические характеристики:
Диапазон измерения:
количество импульсов, шт. от 0 до 9999
времени, с: от 0,1 до 99,9
от 100 до 999
Диапазон измерения расстояний до источника, мм:
альфа-частиц от 5 до 80
бета-излучения от 20 до 90
Параметры алюминиевого фильтра:
количество пластин фильтра, шт. 5
толщина пластин фильтра, мм 0,5; 1; 2; 4; 6
Диапазон измерения толщины пластины фильтра, мм от 0 до 13,5
Электропитание от сети переменного тока:
напряжением, В 220
частотой, Гц 50
Потребляемая мощность, В• А 50
Габаритные размеры, мм:
устройства измерительного 250х80х310ФПК-03м, альфа- частиц
объекта исследования 430х110х110
Масса (общая), кг 7

 

Лабораторная установка для определения резонансного потенциала методом Франка и Герца. ФПК-02м

Метод Франка и Герца.

 

FPK, фпк

Установка ФПК-02 предназначена для проведения лабораторных работ по курсу «Квантовая физика» для инженерно-технических специальностей высшей школы.

Установка обеспечивает возможность производить изучение зависимости анодного тока газонаполненной лампы (триода) от напряжения катод-сетка с максимумами и минимумами, характерными для опыта Франка- Герца на экране осциллографа.

Примечание: Установка не комплектуется осциллографом, а рассчитана на подключение серийного осциллографа, обеспечивающего следующие параметры развертки: скорость — 5 мс/дел.; усиление — 2 В/дел.

При проведении лабораторных работ установка может использоваться как самостоятельно , так и в составе лаборатории » Квантовая физика «

Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях при температуре окружающей среды от +10 ЦЕЛ до +35 ЦЕЛ и относительной влажности воздуха до 80 %.

ФПК02м

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Установка содержит:

устройство измерительное ФПК02 (далее УИ ) — 1 шт.

объект исследования ФПК02 ( далее ОИ ) — 1 шт.

Пределы изменения напряжения, В:

от 0 до 200

от 0 до 20

Погрешность измерения на каждом из пределов +- 10 %

Разрядность индикатора ОИ знаков 4

Максимальное напряжение на анодной нагрузке В. 12

Электропитание установки от сети переменного тока

частотой , Гц 50  напряжением, В.220

Потребляемая мощность, В*А, 100

Габаритные размеры, мм,

УИ 400 х 200 х 420

ОИ 55 х 60 х 300

Масса, кг,

УИ 5

ОИ 4

Наработка на отказ, часов, 500

Средний срок службы, лет,  5

КОМПЛЕКТНОСТЬ

Устройство измерительное 1 шт.

Объект исследования 1 шт.

Паспорт 1 шт.

Так же у нас есть установки по квантовой физике: 
метод Зеемана, метод Шотки, изучения внешнего фотоэффект,
 изучения спектра атома водорода, 
изучения абсолютно черного тела, методом магнетрона, 
ФПК-01, ФПК-03, ФПК-05, ФПК-06, ФПК-07, ФПК-08, ФПК-09, 
ФПК-10, ФПК-11, ФПК-12, ФПК-13, ФПК-14, ФПК-15, ФПК-16

 

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ КОСМИЧЕСКИХ ЛУЧЕЙ. ФПК-01

Установка предназначена для измерения углового распределения интенсивности космического излучения  и называется «космическим телескопом»

10

Цена: 90 000 рублей. (без свинцовых пластин)

                                                     Телескоп это система счетчиков Гейгера-Мюллера, позволяющая регистрировать на космические частички, летящие в заданном направлении.

Сигналы от любого из рядов счетчиков направляются на электронную схему, которая дает импульс только тогда, когда через все эти счетчики пролетит одна и та же частичка.

В лабораторной работе показывается прямая пропорциональность интенсивности падающих космических лучей к квадрату косинуса угла наклона телескопа к вертикали.

 

Установка ФПК-01 предназначена для проведения лабораторных работ по курсу «Квантовая физика» для инженерно-технических специальностей высшей школы.

Установка позволяет регистрировать космическое излучение на поверхности Земли в зависимости от времени измерения, направления счетчиков относительно оси горизонта, отсутствия или наличия свинцовых фильтров и их толщина.

При проведении лабораторных работ установка может использоваться как самостоятельно, так и в составе лаборатории «Квантовая физика».

Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях при температуре окружающей среды от 283 до 308 °К и относительной влажности воздуха до 80 %. при температуре 298 °К и атмосферном давлении от 84,4 до 106,7 кПа.

 

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

количества импульсов 0…9999 времени, с, 1…999;фпк-01

Погрешности измерения:

Количества импульсов, не более, ±2 ед. младшего разряда времени, %, не более ±1 ед. младшего разряда

Пределы изменения угла поворота телескопа объекта исследования от вертикали, 0 …± 90 через 15 градусов (наличие оцифрованных делений).

Пределы изменения угла поворота телескопа объекта исследования от вертикали при установленных пластинах фильтра, градусов 0…15

Возможность установки фильтра между блоками счетчиков телескопа со следующими параметрами:

Материал пластин фильтра — свинец

Количество пластин фильтра — 9Т

Толщина пластин фильтра: 20 ± 1,0 мм.

Диапазон изменения толщины пластин фильтра: 0…180 мм.

Дискретность изменения толщины пластин фильтра: 20 мм.

Скорость регистрации частиц, имп:  3 мин.

Питание установки осуществляется от сети переменного тока частотой: 50 ± 0,4 Гц.

Напряжение: 220 В.

Потребляемая мощность: 50 Ва

Габаритные размеры,  устройства измерительного: 250 х 80 х 310 мм.

объекта исследования: 520 х 550 х 750 мм.

Масса установки: 60 кг.

Общая масса, без пластин: 25 кг.

Средний срок службы: 5 лет.

Наработка на отказ: 1000 часов.СВИНЦОВЫЕ ПЛАСТИНЫ ДЛЯ ФПК-01

 

КОМПЛЕКТНОСТЬ:

Комплект поставки указан в таблице

Обозначение документа

Наименование

Кол.

Примечание

1.ФПК01м

Блок управления

1

ФПК01м

Объект исследования

1

ФПК01 ПС

Паспорт

1

  • Так же в курс «Квантовая физика» входят следующие установки:
  • Установка для определения резонансного потенциала методом Франка и Герца ФПК-02
  • Установка для определения длины пробега частиц в воздухе (определение длины пробега a-частиц) ФПК-03
  • Установка для изучения энергетического спектра электронов (изучения b-радиоактивности) ФПК-05
  • Установка для изучения p-n перехода ФПК-06
  • Установка для изучения температурной зависимости электропроводности металлов и полупроводников ФПК-07
  • Установка для изучения эффекта Холла в полупроводниках ФПК-08
  • Установка для изучения спектра атома водорода ФПК-09
  • Установка для изучения внешнего фотоэффекта ФПК-10
  • Установка для изучения абсолютно черного тела ФПК-11
  • Установка для изучения работы сцинтилляционного счетчика ФПК-12
  • Установка для изучения и анализа свойств материалов с помощью сцинтилляционного счетчика ФПК-13
  • Установка лабораторная Эффект Зеемана ФПК-14
  • Установка для определения удельного заряда электрона методом магнетрона ФПК-15
  • Установка для определения эффекта Шотки ФПК-16

 

      

 

Установка лабораторная «Определение длины свободного пробега альфа-частиц и изучение бета-радиоактивности». ФПК-03/05

Определение длины свободного пробега альфа-частиц и изучение бета-радиоактивностиустановка, лабораторная, ВУЗ, Университет, радиактивность, определение длины свободного пробега, альфа-частиц, изучение, бета-радиоактивность

ФПК-03/05

НАЗНАЧЕНИЕ

Установка ФПК-03/05 предназначена для проведения лабораторных работ по курсу «Квантовая физика» для инженерно-технических специальностей высшей школы.

Установка позволяет производить определение интенсивности излучения бета частиц по количеству импульсов возникающих в счетчике и подсчитываемых установкой.

При проведении лабораторных работ установка может использоваться как самостоятельно (для изучения бета радиоактивности) так и в составе лаборатории » Квантовая физика «

Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях при температуре окружающей среды от +10 ЦЕЛ до +35 ЦЕЛ и относительной влажности воздуха до 80 %.

Установка предназначена для применения совместно с источниками радионуклидными бета излучений закрытых типов 1П9-253, 1СО-324 или им подобными. Основные технические характеристики рекомендуемых источников приведены в разделе 2 настоящего паспорта. Поставка источников излучения производится через П/О «ИЗОТОП» в соответствии с НРБ-76/87 и ОСП-72/87.

 

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Установка содержит:

Блок управления 1 шт

Блок регистрации альфа — частиц ФПК03.04.00.00.00 1 шт

Блок регистрации бета- частиц ФПК05.04.00.00.00 1 шт.

Разрядность индикатора КОЛИЧЕСТВО ЧАСТИЦ, знаков 5

Диапазон измерения времени таймером, сек от 0 до 1800

 Погрешность измерения времени, % не более 1

Диапазон расстояний от источника бета частиц до счетчика, мм от 50 до 130

Скорость регистрации альфа и бета частиц, при использовании

образцовых источников, на расстоянии 0 мм от источника, имп./мин., не менее 2500

Точность измерения напряжения на анодах счетчиков, В, не хуже ± 5

 Рекомендуемые параметры применяемых совместно с установкой источников радионуклидных альфа и бета излучений:

тип источника закрытый

наружные размеры источника:

диаметр, мм 35 -1

толщина, мм, не более 5

площадь активной части кв. см, не более 1

виды радионуклидов (бета) К-40, Sr-90 + Y-90

максимальная активность источников, Бк, не более 3,7*104

Примечание: Максимальная активность источника не должна превышать значение минимально значимой активности (МЗА) по нормам радиационной безопасности, утвержденным в установленном порядке

Электропитание установки от сети переменного тока

частотой , Гц 50 ± 1

напряжением, В 220 (+10%;-15%)

 Потребляемая мощность, В*А, не более 30

 Габаритные размеры, мм, не более:

  • Блока управления 150х150х100
  • Блоков регистрации 400 х 150 х 150

Масса установки, кг, не более 5

 Наработка на отказ, час, не менее 500

Средний срок службы, лет, не менее 5

Комплект поставки

1. ФПК05.03.00.00.00 Блок управления    1шт.

2. ФПК03.04.00.00.00 Блок регистрации альфа – частиц (А)  1шт.

3. ФПК05.04.00.00.00 ПС Блок регистрации бета – частиц (Б)  1шт.

4. ФПК05.00.00.00.00 ПС 1шт.

 

Типовой комплект оборудования для лаборатории «Квантовая физика» ФПК

Квантовая, фпк, физика, космический телескопКВАНТОВАЯ ФИЗИКА, ФПК. Цена 140 000 руб.

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ КОСМИЧЕСКИХ ЛУЧЕЙ ФПК-01 Цена 140 000 руб.

УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ РЕЗОНАНСНОГО ПОТЕНЦИАЛА МЕТОДОМ ФРАНКА И ГЕРЦА ФПК-02М Цена 80 000 руб.

УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ ДЛИНЫ ПРОБЕГА АЛЬФА-ЧАСТИЦ И БЕТА-РАДИОАКТИВНОСТИ ФПК-03М Цена 110 000 руб.

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ ЭНЕРГЕТИЧЕСКОГО СПЕКТРА ЭЛЕКТРОНОВ ФПК-05.Цена 120 000 руб.

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ P-N ПЕРЕХОДА ФПК-06 Цена 100 000 руб.

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ЭЛЕКТРОПРОВОДНОСТИ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ ИЗУЧЕНИЯ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ЭЛЕКТРОПРОВОДНОСТИ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ  ФПК-07 Цена 70 000 руб.

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ ЭФФЕКТА ХОЛЛА В ПОЛУПРОВОДНИКАХ ФПК-08 Цена 90 000 руб.

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ СПЕКТРА АТОМА ВОДОРОДА ФПК-09 Цена 90 000 руб.

ДЕМОНСТРАЦИОННАЯ УЧЕБНАЯ УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ ВНЕШНЕГО ФОТОЭФФЕКТА ФПК-10 Цена 90 000 руб.

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ АБСОЛЮТНО ЧЕРНОГО ТЕЛА ФПК-11 Цена 80 000 руб.

Установка для изучения работы сцинтилляционного счетчика  ФПК-12 Цена 805000 руб.

Установка для изучения и анализа свойств материалов с помощью сцинтилляционного счетчика (изучения γ-радиоактивных элементов) ФПК-13 Цена 90 000 руб.

УСТАНОВКА ЛАБОРАТОРНАЯ «ЭФФЕКТ ЗЕЕМАНА» ФПК-14 Цена 160 000 руб.

УСТАНОВКА ЛАБОРАТОРНАЯ «УДЕЛЬНЫЙ ЗАРЯД ЭЛЕКТРОНА» ФПК-15 Цена 75 000 руб.

ЭФФЕКТ ШОТКИ ФПК-16 Цена 90 000 руб.

Лабораторная работа «ИЗУЧЕНИЕ ЯВЛЕНИЯ ВНЕШНЕГО ФОТОЭФФЕКТА»

Лабораторная работа №12

ИЗУЧЕНИЕ ЯВЛЕНИЯ ВНЕШНЕГО ФОТОЭФФЕКТА

Цель работы: изучить законы внешнего фотоэффекта, определить постоянную Планка.

Установку можно посмотреть ТУТ

Содержание работы

                        Гипотеза Планка получила подтверждение при объяснении явления фотоэлектрического эффекта. Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Фотоэффект был обнаружен в 1887 году г. Герцем, позднее детально исследован А. Г. Столетовым

  1. Ввакуумной трубке с помощью потенциометра R можно менять величину напряжения между катодом К и анодом А и его знак. Облучая катод светом разных для действием света, прямо пропорциональна его интенсивности.
  2. Для каждого вещества существует “красная граница” фотоэффекта, то есть минимальная частота 0, ниже которой фотоэффект не происходит.
  3. Максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света и линейно возрастает с частото излучения.

В 1905 году для объяснения явления фотоэффекта А. Эйнштейн выдвинул квантовую теорию фотоэффекта, согласно которой свет испускается, распространяется в пространстве и поглощается в веществе порциями – квантами (фотонами), энергия которых

= h, (1)

При этом каждый квант поглощается только одним электроном. Отсюда следует первый закон фотоэффекта. Энергия падающего фотона идет на совершение им работы выхода А из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии:

h = А + mvmax2/2, (2)

это уравнение Эйнштейна для внешнего фотоэффекта, из которого непосредственно следует вывод второго и третьего законов фотоэффекта. Так, максимальная кинетическая энергия фотоэлектронов линейно возрастает с ростом частоты падающего света (третий закон). А с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается до нуля, при этом

h0 = А, (3)

следовательно,

0=А/h (3а)

– красная граница фотоэффекта для данного материала.

Эксперимент, позволяет получить вольт-амперную характеристику фотоэффекта – зависимость фототока i от разности потенциалов между катодом и анодом U

С ростом U фототок i постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода, и достигает насыщения iнас. При U=0 фототок не исчезает, то есть электроны, выбитые из катода, обладают некоторой начальной скоростью v, позволяющей им достигнуть анода без внешнего поля. Для того чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение U0, измерив которое, можно определить максимальное значение скорости и кинетической энергии фотоэлектронов:

mvmax2/2 = qU0, (4)

Электроны в твердом теле можно считать находящимися в некоторой потенциальной яме на глубине U

Согласно квантовой теории металлов свободные электроны в потенциальной яме заполняют дискретный ряд уровней энергии.

При низких температурах (Т → 0) заполненными оказываются все нижние уровни, вплоть до уровня Ef, называемого уровнем Ферми. Для выхода электронов за пределы металла с уровня Ферми следует сообщить ему дополнительную энергию, достаточную для преодоления потенциального барьера.

Минимальная дополнительная энергия, достаточную для преодоления потенциального барьера с уровня Ферми, называется работой выхода А. Величина А зависит от свойств кристаллической решетки твердого тела и состояния поверхности металла.

Приборы и оборудование

Установка состоит из объекта исследования ОИ и устройства измерительного УИ, выполненных в виде конструктивно законченных изделий, устанавливаемых на лабораторном столе и соединяемых между собой кабелем 1

ОИ конструктивно выполнен в виде сборного корпуса 2, в котором установлены осветитель (спектральная ртутная лампа) с источником питания, блок интерференционных светофильтров 3 и устройство регулировки освещенности 4. Положение «0» блока светофильтров соответствует прохождению света без светофильтров и может применяться для снятия интегральных вольтамперных и люксамперных характеристик, а положение «5» – перекрывает лампу и используется для установки ноля. К корпусу с помощью кронштейна 5 крепится усилитель фототока 6, на верхнюю крышку которого устанавливаются сменные фотоприемники 7 с фотоэлементами. При установке фотоприемников их приемное окно совмещается с выходным окном осветителя и закрывают при помощи бленды 8.

На передней панели объекта исследования находятся сетевой выключатель с индикатором включения сети 9. На задней панели объекта исследования расположены клемма заземления, держатели предохранителей и сетевой шнур с вилкой. На боковой стенке расположено выходное окно осветителя 8 и устройства для смены интерференционных светофильтров 3 и регулировки освещенности 4. На боковых поверхностях усилителя фототока расположены соединительный шнур 1 с разъемом для подключения объекта исследования к устройству измерительному и регуляторы ГРУБО и ТОЧНО 10 установки ноля при отсутствии освещенности.

На передней панели устройства измерительного размещены следующие органы управления и индикации:

– кнопка 11 ПРЯМАЯ — ОБРАТНАЯ с соответствующими индикаторами — предназначена для включения прямого или обратного режимов измерения.

– кнопки «+», «-» 12 и СБРОС 13 — предназначены для регулировки напряжения на фотоэлементе и его сброса в ноль.

– индикаторы В 14 и мкА 15 — предназначены для индикации значений величин напряжения на фотоэлементе и фототока в процессе работы

На задней панели устройства измерительного расположены выключатель СЕТЬ, клемма заземления, держатели предохранителей (закрыты предохранительной скобой), сетевой шнур с вилкой и разъем для подключения объекта исследования .

Принцип действия установки основан на измерении тока через фотоэлемент при изменении полярности и величины приложенного к нему напряжения и изменения спектрального состава и величины освещенности катода фотоэлемента.

В процессе выполнения лабораторных работ снимаются зависимости тока через фотоэлемент от приложенного к нему напряжения. При этом меняется полярность напряжения ( т.е. раздельно снимаются прямая и обратная ветви вольтамперной характеристики фотоэлемента). Характеристики снимаются при различных значениях освещенности и при изменении длины волны освещения фотоэлемента. По результатам измерений строятся семейства вольтамперных характеристик и, используя соответствующие методы расчета, численно оценивается значение постоянной Планка.

Порядок выполнения работы

1. Установить на объект исследования фотоприемник 7 с исследуемым фотоэлементом и задвиньте бленду 8 осветителя в окно фотоэлемента.

2. Включить устройство измерительное и объект исследования выключателем СЕТЬ. При этом должен загореться индикаторы ОБРАТНАЯ, В и мкА устройства измерительного. После 5 минутного прогрева ручками 10 УСТАНОКА НОЛЯ (ГРУБО и ТОЧНО) на объекте исследования установить нулевое значение на индикаторе15 (мкА) устройства измерительного.

3. Включить объект исследования выключателем СЕТЬ на его передней панели. При этом должен загореться индикатор СЕТЬ объекта исследования.

4. Дать лампе осветителя прогреться в течение 15 мин.

5. С помощью кнопки 11 (ПРЯМАЯ – ОБРАТНАЯ) выбрать необходимый режим измерения.

6. Установить необходимый светофильтр.

7. Изменяя значения напряжения с помощью кнопок 12 («+» и «-«), и считывать показания фототока с индикатора 15 («мкА») снять данные для построения вольтамперной характеристики

8. Повторить измерения для других светофильтров.

Примечание 1: При необходимости с помощью поворота кольца 4, расположенного на выходном окне объекта исследования, можно изменять освещенность фотоэлемента.

Примечание 2: При определении запирающего напряжения фотоэлемента необходимо нулевое значение тока считывать при уменьшении напряжения от нулевого значения по индикатору 14 до значения запирающего напряжения, а не наоборот. Не рекомендуется устанавливать значение напряжения ниже запирающего.

9. По окончании работы выключить объект исследования и устройство измерительное.

10. Построить ВАХ.

11. Определить число фотоэлектронов, выбитых в единицу времени:

n = iн/е, (5)

где е =1.6*10-19 Кл.

12. Оценить постоянную Планка для найденных задерживающих потенциалов U0, соответствующих двум по формуле:

(6)

где с=3*108м/с.

13. Повторить вычисления для других значений λ. Оценить погрешность.

Контрольные вопросы

1. В чем состоит явление внешнего фотоэффекта.

2. Что такое “красная граница ” фотоэффекта.

3. Сформулировать законы фотоэффекта.

4. Вывод второго и третьего законов фотоэффекта на основе уравнения Эйнштейна.

5. Объяснить ход прямой и обратной ветвей графика зависимости фототока от напряжения между катодом и анодом.

Методические указания,  УЧЕБНАЯ ТЕХНИКА 8- 495- 724-93-09,www.учебнаятехника.рф

Установка для изучения абсолютно черного тела. ФПК-11

 

Установка для изучения абсолютно черного тела, ФПК-11

Лабораторный стенд «Изучение абсолютно черного тела»

показан принципа действия установки, технические характеристики, указания по эксплуатации и другие сведения, необходимые для обеспечения полного использования технических и педагогических возможностей установки.

НАЗНАЧЕНИЕ

Установка предназначена для проведения лабораторных работ по курсу «Квантовая физика» для инженерно-технических специальностей высшей школы.

Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях при температуре окружающей среды от +10 ЦЕЛ до +35 ЦЕЛ и относительной влажности воздуха до 80 %.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Установка содержит:

  • Электропечь 1 шт.
  •  Блок управления 1 шт.
  • Термопарный приемник излучения

Максимальная рабочая температура, 0С 900

Сопротивление излучателя при 20 град. Цельсия, Ом 1,9± 0,05

.Питание установки осуществляется от сети переменного тока

частотой, Гц 50 + — 1

напряжением, В 220 В (+10%;-15%)

Потребляемая мощность, В*А, не более 160

Габаритные размеры, мм, не более:

  • электропечи с приемником теплового излучения 300 х 150 х 250
  • измерительного устройства 240 х 320 х 80

Масса, кг, не более:

  • электропечи 4,0
  • блока управления 3,0

Наработка на отказ, час, не менее 1000

Средний срок службы, лет, не менее 6

Тепловое излучение. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана, Вина.

     Тела, нагреты до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым излучением. Тепловое излучение является самым распространенным в природе, совершается за счет энергии теплового движения атомов и молекул в-ва (т.е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризу­ется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких – преимущественно длинные инфракрасные. Тепловое излучение – практически единственный тип излучения, который может быть равновесным. Предположим, что нагретое тело помещено в полость, ограниченное идеально отражающей оболочкой. С течением времени, в р-тате непрерывного обмена энергией между телом и излучением, наступит равновесие, т.е. тело в единицу времени будет поглощать столько же сколько и излучать.

  • Закон Стефана — Больцмана — интегральный закон излучения абсолютно чёрного тела. Определяет зависимость плотности мощности излучения абсолютно чёрного тела от его температуры.

Насос вакуумный с электроприводом.

Насос вакуумныйнасос, вакуумный, электропривод, школа, колпак, воздух, физика

 

Используется для создания разряжения или избыточного давления в замкнутых объемах при проведении лабораторных опытов по физике.
Использование электропривода дает возможность значительно сократить время проведения опыта.
Список демонстрационных опытов:

Насос вакуумный с электроприводом используется c для создания разряжения в замкнутых объемах.

Использование электропривода позволяет значительно сократить время проведения опыта и не требует от преподавателя наличия специальных навыков по обращению с прибором.

Перечень демонстрационных опытов в которых применяется вакуумный насос: 

  • кипение жидкости при пониженном давлении
  • распространение звуковых колебаний в среде
  • свободное падение тел разной массы
  • внешнее и внутреннее давление
  • получение газового разряда

Технические характеристики

  • Скорость достижения глубины вакуума — 56 л/мин.
  • Расчетный остаток давления 10 Па (75 микрон).
  • Масса – 7,2 кг.
  • Размеры корпуса 249×121×230 мм.
  • Емкость рабочего объема масла — 250 мл.
  • Количество рабочих режимов — 1 ступень.
  • Выходная мощность – 1/4 л.с.
  • Интенсивность вращения ротора — 1440 об./мин.
  • Напряжение питания — 220В.

Комплект поставки

    • Насос в сборе                                   1 шт.
    • Флакон с вакуумным маслом     1 шт.
    • Руководство по эксплуатации    1 шт.
ПОИСК ПО САЙТУ
Все страницы
Вверх
Яндекс.Метрика © 2019    Компания ООО "УЧЕБНАЯ ТЕХНИКА". ИНН 7724306437 Телефон: +7 (495) 724-93-09 E-mail: Lab.texnika@yandex.ru 115573 г. Москва, ул. Ореховый бульвар дом 22   //    Войти
Paste your AdWords Remarketing code here