Яндекс.Метрика

8 (495) 724-93-09

lab.texnika@ya.ru

Установка «Изучение интерференционной схемы «колец Ньютона» (с оптической головкой) ФПВ-05-2-2

Установка предназначена для изучения интерференционной схемы колец Ньютона.

Установка позволяет определить радиус кривизны линзы методом «полос равной толщины»

Кольца Ньютона ФПВ-05-2-2

Установка позволяет определить радиус кривизны линзы методом «полос равной толщины» (кольца Ньютона).

                                     Установка состоит из бинокулярного микроскопа, один окуляр которого используется для подсветки, а другой снабжен измерительной шкалой, насадки для микроскопа, устанавливаемой в окуляр микроскопа и позволяющей крепить осветитель и светофильтры, исследуемой линзы собранной с плоскопараллельной пластиной в оправе, комплект интерференционных светофильтров и осветителя.

Свет от осветителя проходя через светофильтр падает вертикально на исследуемую линзу, установленную на плоскопараллельной пластине, и после отражения через окуляр наблюдается интерференционная картина, в виде концентрических светлых и темных окружностей.Измерение интерференционной схемы, колеца Ньютона,ФПВ, ФПВ-05-2-2

Основные технические характеристики

Увеличение микроскопа, крат. 3,33 — 100

Линейное поле зрения, мм 39,3-2,4

Диапазоны пропускания светофильтров, нм 435±10 486±10 546±10 630±10

Рабочее расстояние, мм 95

Питание осветителя должно осуществляться от сети 220В 50Гц

Габаритные размеры установки мм  230х190х450

Общая масса, кг  7

Инструкция по монтажу и подготовке к работе

лабораторной установки «Кольца Ньютона» ФПВ05-2-2оптика, фпв, fpv

В состав лабораторной установки «Кольца Ньютона» входят:

1. Микроскоп бинокулярный (Рис. 1) 1 шт.Кольца Ньютона, ФПВ, Оптика, физика

2. Устройство подсветки на галогенной лампе (Рис. 2) 1 шт.

3. Контейнер с комплектом светофильтров и оптическим устройством

«Кольца Ньютона» (Рис. 3) 1 шт.

Рис. 1

1 – предметный столик

2 – видеоокуляр

3 – ручка регулировки увеличения

4 — шток переключения режимов «подсветка – бинокуляр»

5 — ручка наведения на резкость

6 — съемная крышка объектива

Рис. 2

Рис. 3

Подготовка установки к работе

  1. Достать из упаковки составные части установки, изображенные на Рис. 1 – Рис. 3 и разместить на лабораторном столе.
  2. Установить диск предметного столика белой стороной вверх.
  3. Вывернуть видеоокуляр (2) микроскопа и закрепить нам его месте устройство подсветки (Рис. 2)
  4. Достать из контейнера оптическое устройство (Рис. 3) и разместить на диске предметного столика микроскопа.
  5. Снять защитную крышку (6) микроскопа.
  6. Установить ручкой (3) микроскопа минимальное увеличение.
  7. Установить на правой стороне бинокулярной части микроскопа окуляр с сеткой в виде шкалы.
  8. Установить шток (4) в положение обеспечивающее наблюдение в оба окуляра.
  9. Установить оптическое устройство «Кольца Ньютона» на диске предметного столика так, чтобы он находился в середине шкалы измерительного окуляра.
  10. Выберите один из фильтров из контейнера (Рис. 3) и установите его под устройством подсветки.
  11. Включите устройство подсветки (Рис. 2) в сеть и переключите шток (4) микроскопа в положение при котором свет от устройства подсветки будет попадать на устройство «Кольца Ньютона».
  12. . Наблюдая в правый окуляр, найдите положение оптического устройства «Кольца Ньютона», при котором картина колец будет наблюдаться в центре поля зрения, пользуясь ручкой регулировки увеличения (3) микроскопа.
  13. Ручкой (3) микроскопа добейтесь максимального увеличения. При этом ручкой (5) добейтесь максимальной четкости картины колец для выбранного монохроматичного цвета.
  14. Выберите положение оптического устройства «Кольца Ньютона» , таким, при котором было бы удобно измерять диаметр колец по шкале окуляра.

Установка готова для проведения на ней работы.

ПРИМЕЧАНИЕ: В поставленном экземпляре микроскопа шток (4) расположен с левой стороны.

Типовые комплекты оборудования

ТИПОВЫЕ КОМПЛЕКТЫ ОБОРУДОВАНИЯ ПО ДИСЦИПЛИНАМ:

 

 

УЧЕБНАЯ ТЕХНИКА

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ КОСМИЧЕСКИХ ЛУЧЕЙ. ФПК-01

Установка лабораторная «Космический телескоп»

   Установка предназначена для измерения углового распределения интенсивности космического излучения  и называется «космическим телескопом»

10

Цена: 90 000 рублей. (без свинцовых пластин)

   Телескоп это система счетчиков Гейгера-Мюллера, позволяющая регистрировать на космические частички, летящие в заданном направлении.

Сигналы от любого из рядов счетчиков направляются на электронную схему, которая дает импульс только тогда, когда через все эти счетчики пролетит одна и та же частичка.

В лабораторной работе показывается прямая пропорциональность интенсивности падающих космических лучей к квадрату косинуса угла наклона телескопа к вертикали.

Установка ФПК-01 предназначена для проведения лабораторных работ по курсу «Квантовая физика» для инженерно-технических специальностей высшей школы.

Установка позволяет регистрировать космическое излучение на поверхности Земли в зависимости от времени измерения, направления счетчиков относительно оси горизонта, отсутствия или наличия свинцовых фильтров и их толщина.

При проведении лабораторных работ установка может использоваться как самостоятельно, так и в составе лаборатории «Квантовая физика».

Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях при температуре окружающей среды от 283 до 308 °К

и относительной влажности воздуха до 80 %. при температуре 298 °К и атмосферном давлении от 84,4 до 106,7 кПа.

 

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

Количества импульсов 0…9999 времени, с, 1…999;фпк-01

Погрешности измерения:

Количества импульсов, не более, ±2 ед. младшего разряда времени, %, не более ±1 ед. младшего разряда

Пределы изменения угла поворота телескопа объекта исследования от вертикали, 0 …± 90 через

15 градусов (наличие оцифрованных делений).

Пределы изменения угла поворота телескопа объекта исследования от вертикали

при установленных пластинах фильтра, градусов 0…15

Возможность установки фильтра между блоками счетчиков телескопа со следующими параметрами:

Материал пластин фильтра — свинец

Количество пластин фильтра — 9Т

Толщина пластин фильтра: 20 ± 1,0 мм.

Диапазон изменения толщины пластин фильтра: 0…180 мм.

Дискретность изменения толщины пластин фильтра: 20 мм.

Скорость регистрации частиц, имп:  3 мин.

Питание установки осуществляется от сети переменного тока частотой: 50 ± 0,4 Гц.

Напряжение: 220 В.

Потребляемая мощность: 50 Ва

Габаритные размеры,  устройства измерительного: 250 х 80 х 310 мм.

объекта исследования: 520 х 550 х 750 мм.

Масса установки: 60 кг.

Общая масса, без пластин: 25 кг.

Средний срок службы: 5 лет.

Наработка на отказ: 1000 часов.СВИНЦОВЫЕ ПЛАСТИНЫ ДЛЯ ФПК-01

 

КОМПЛЕКТНОСТЬ:

Комплект поставки:

1. ФПК01м Блок управления 1 шт.;

2. ФПК01м Объект исследования 1 шт.;

3.  ФПК01 ПС Паспорт 1шт.

 

  • Так же в курс «Квантовая физика» входят следующие установки:
  • Установка для определения резонансного потенциала методом Франка и Герца ФПК-02
  • Установка для определения длины пробега частиц в воздухе (определение длины пробега a-частиц) ФПК-03
  • Установка для изучения энергетического спектра электронов (изучения b-радиоактивности) ФПК-05
  • Установка для изучения p-n перехода ФПК-06
  • Установка для изучения температурной зависимости электропроводности металлов и полупроводников ФПК-07
  • Установка для изучения эффекта Холла в полупроводниках ФПК-08
  • Установка для изучения спектра атома водорода ФПК-09
  • Установка для изучения внешнего фотоэффекта ФПК-10
  • Установка для изучения абсолютно черного тела ФПК-11
  • Установка для изучения работы сцинтилляционного счетчика ФПК-12
  • Установка для изучения и анализа свойств материалов с помощью сцинтилляционного счетчика ФПК-13
  • Установка лабораторная Эффект Зеемана ФПК-14
  • Установка для определения удельного заряда электрона методом магнетрона ФПК-15
  • Установка для определения эффекта Шотки ФПК-16

 

      

 

Лабораторная установка «Изучение внешнего фотоэффекта». ФПК-10

ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ ВНЕШНЕГО  ФОТОЭФФЕКТА

 

учебное оборудование фпк

                                Установка лабораторная ФПК-10 предназначена для проведения лабораторных работ по курсу «Квантовая физика» для инженерно-технических специальностей высшей школы.

Лабораторная установка «Изучение законов фотоэффекта и определение постоянной Планка» ФПК-10 позволяет снимать и исследовать вольтамперные характеристики фотоэлементов в широком интервале освещенностей и производить оценку численных значений постоянной Планка.

При проведении лабораторных работ установка может использоваться, как самостоятельно, так и в составе лаборатории «Квантовая физика».

Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях.

 

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Изучение внешнего фотоэффекта

Количество исследуемых фотоэлементов 2-3 шт.

Пределы изменения анодного напряжения, В, от -1,8 В до + 0,5В

Предел измерения анодного напряжения, В -1,999….…1,999

Пределы измерения фототока, мкА, 0.0000….199,9 учебное оборудование, техника

Погрешности измерения анодного напряжения и фототока от максимальной величины соответствующего предела измерения, %, 4 ± 2 единицы младшего разряда.

Изменение освещенности — плавное, с помощью двух поляризационных светофильтров.

Количество интерференционных светофильтров 5.

Длины волн пропускания светофильтров нм, 4 07 (1), 435(2), 546(3), 570(4), 580(5).

Примечание: в скобках указаны номера светофильтров, указанные на установке.

Тип применяемого осветителя лампа галогенная (50 Вт. 220 В)

Питание установки осуществляется от сети переменного тока частотой 50 ± 0,4 Гц, напряжением 220В.

Потребляемая мощность, ВА, 150

Габаритные размеры, мм:

  • устройства измерительного 250 х 80 х 330
  • объекта исследования 150 х 250 х 350

Масса установки, кг 8

Средний срок службы, лет 5

Наработка на отказ, часов,  1000

Так же можно посмотреть лабораторные установки: фпк-01, фпк-02, фпк-03, фпк-05, фпк-06, фпк-07, фпк-08, фпк-09, фпк-10, фпк-11, фпк-12, фпк-13, фпк-14, фпк-15, фпк-16.

Установка для изучения тонкой структуры спектральной линии ртути и спектра паров натрия. ФДСВ-03

Установка для демонстрационного проведения опытов по расщеплению желтых дублетов спектров паров ртути и натрия.

фдсв-06, фдсв, физика

Расщепление спектров наглядно показывается с помощью дифракционных решеток с высокой раздельной способностью с последующим проектированием проекции на экран.

Установка ФДСВ состоит из источника питания и осветителей:

  • Ртутная лампа
  • Натриевая лампа
  • Дифракционные решетки
  • Оптический набор для проекции.
    Все составные части установки устанавливаются с помощью рейтеров на оптическую скамью.

Технические характеристики:

Разрешающая способность дифракционных решеток, лин/мм 200
800
Фокусное расстояние объектива, мм 230
Световой диаметр линз конденсора, мм, 136
Длина оптической скамьи, мм, не менее 1200
Расстояние от оптической оси до плоскости скамьи, мм 200±5
Световой поток ртутной лампы, клм (справ.) 22,5
Световой поток натриевой лампы, клм (справ.) 47
Толщина одной пластины фильтра, мм, 20 ± 0,5
Питание установки осуществляется от сети переменного тока 220В, 50Гц
Потребляемая мощность, ВА, 1750
Габаритные размеры, мм, 1200х600х430
Масса, кг, 25

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ ЭНЕРГЕТИЧЕСКОГО СПЕКТРА ЭЛЕКТРОНОВ. ФПК-05.

 

 Установка предназначена для проведения лабораторных работ по курсу «Квантовая физика» для инженерно-технических специальностей высшей школы.

ФПК-05

Установка позволяет производить определение длины пробега электронов (бета частиц) и верхней границы бета-спектра по количеству импульсов возникающих в счетчике и подсчитываемых установкой.

 При проведении лабораторных работ установка может использоваться как самостоятельно (для изучения бета радиоактивности) так и в составе лаборатории Квантовая физика

 Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях при температуре окружающей среды от +10 ЦЕЛ до +35 ЦЕЛ и относительной влажности воздуха до 80 %.

 Установка предназначена для применения совместно с источниками радионуклидными бета излучений закрытыми типов 1П9-253, 1СО-324 или им подобными. Основные технические характеристики

рекомендуемых источников приведены в разделе 2 настоящего паспорта. Поставка источников излучения производится через П/О «ИЗОТОП» в соответствии с НРБ-76/87 и ОСП-72/87.

 

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Установка содержит:

блок управления ФПК05 — 1 шт.

объект исследования ФПК05 — 1 шт.

Разрядность индикатора КОЛИЧЕСТВО ЧАСТИЦ, знаков 4

Диапазон измерения времени таймером от 0 до 999

Погрешность измерения времени, %  1

Алюминиевые фильтры применяемые в ОИ, толщиной, мм 1,5±0,1

Количество пластин фильтра 21

Дискретность изменения толщины набора пластин, мм 1,5

Диапазон расстояний от источника бета частиц до счетчика, мм от 50 до 130

Погрешность установки расстояний, мм не более 5,0

Скорость регистрации бета частиц, при использовании образцовых источников, на расстоянии 0 мм от источника, имп./мин., не менее 2500

Примечание. Указанный параметр предназначен для определения работоспособности счетчиков ионизированного излучения, надежности контактов а также исправности электронных узлов.

Рекомендуемые параметры применяемых совместно с установкой источников радионуклидных бета излучений 

тип источника закрытый

наружные размеры источника:

диаметр, мм 35 -1

толщина, мм,  5

площадь активной части кв. см,  1

виды радионуклидов (бета) Sr-90 + Y-90

максимальная активность источников, Бк,  3,7*10(4)

 Примечание: Максимальная активность источника не должна превышать значение минимально значимой активности (МЗА) по нормам радиационной безопасности, утвержденным в установленном порядке

 Электропитание установки от сети переменного тока

частотой , Гц 50 ± 1

напряжением, В 220 (+10%;-15%)

Потребляемая мощность, В*А, не более 30

Габаритные размеры, мм, не более

Блока управления 250х80х310

Объекта исследования 400 х 150 х 150

 Масса, кг

Блока управления 2, 5

Объекта исследования 2, 5

Наработка на отказ, час, не менее 500

Средний срок службы, лет,  5

 Установки по Квантовой физике (ФПК). В состав полного комплекта входит следующие модели:

 ФПК-01, ФПК-02, ФПК-03, ФПК-05, ФПК-06, ФПК-07, ФПК-08, ФПК-09, ФПК-10, ФПК-11, ФПК-12, ФПК-13, ФПК-14, ФПК-16

УСТАНОВКА ЛАБОРАТОРНАЯ «ЭФФЕКТ ЗЕЕМАНА». ФПК-14.

эффект Зеемана, установка, квантовая физика, типовой комплект учебного оборудования, фпк, фпк-14

На оптической скамье (1) расположены (в порядке от электромагнита(2): объектив с ирисовой диафрагмой (6), Интерферометр (Эталон) Фабри-Перо (7), поляризатор (8), линза с фокусным расстоянием 280 мм (9),Линза с сеткой для измерения интерференционных колец (10) и веб- камера (11).

ЭФФЕКТ ЗЕЕМАНА

Лабораторная установка предназначена для проведения лабораторных работ по курсу «Квантовая физика», «Ядерная физика» для инженерно-технических специальностей высшей школы.

Установка ФПК-14 позволяет:

  • Исследовать явление эффекта Зеемана, путем наблюдения расщепление спектральных линий и энергетических уровней атомов кадмия под действием магнитного поля;
  • Измерения зависимости энергии возбужденного атома кадмия от величины магнитного поля для продольного и поперечного эффекта.

 

* может использоваться как самостоятельно, так и в составе лаборатории » Квантовая физика «

Комплектность лабораторной установки «Эффект Зеемана» ФПК-14:

Установка для изучения эффекта Земана в составе:
1. Скамья оптическая — 1 шт.
2. Видеокамера — 1 шт.
3. Экран с сеткой (цена деления 0,2 мм) -1 шт
4. Линза f=+50 мм — 1 шт.
5. Линза f=+250 мм — 1 шт.
6. Поляризатор — 1 шт.
7. Эталон Фабри-Перо — 1 шт.
8. Линза f=+50 мм со светофильтром и ирисовой диафрагмой — 1 шт.
9. Электромагнит со спектральной лампой — 1 шт.
10. Блок питания — 1 шт.
11. Шнур для подключения катушек электромагнита — 1 шт.

Паспорт — 1 шт.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

Пределы установки тока в катушках электромагнита:

-для одной катушки, А, 1,6 -5,5

— для двух параллельных катушек, А 7,5 — 11

Длина оптической скамьи, мм. 1000 ±5

Количество подвижных рейтеров 6

Диапазон изменения напряжения питания катушек

электромагнита, В, не менее 8,5 – 26,0

 Мощность спектральной кадмиевой лампы, Вт 15

 Максимальная величина индукции магнитного поля между

полюсами электромагнита, Тл, не менее 1, 1

Интерфейс видеокамеры USB 2,0

Питание установки сеть 220 В 50 Гц.

Габариты установки, мм, не более:

Оптической скамьи 1000 х 200 х 300

Электромагита с поворотным столиком 300 х 200 х 350

Блока питания 300 х 250 х 170

Суммарная масса установки, кг, не более 40

Наработка на отказ, час, не менее 1000

 Средний срок службы, лет, не менее 5

Учитывая наличие в спектре неона большого количества красных линий (см. рис. ), в установке измерения проводятся на желтой линии 585,9 нм. Красная часть спектра отрезается желто-зеленым светофильтром, присоединенным к интерферометру Фабри-Перо. При этом сине-зеленая часть спектра неона подавлена частотной характеристикой интерферометра в силу своей удаленности. В результате интерференционная картина имеет хорошую четкость и позволяет наблюдать эффект Зеемана, как прямой (вдоль направления линий магнитного поля), так и поперечный.

Для наблюдения прямого эффекта Зеемана в полюсах электромагнита сделаны отверстия, а для наблюдения поперечного эффекта Электромагнит имеет возможность поворачиваться вокруг оси на 90 градусов.неон, 585,9 нм, эффект зеемана, фпк-14

 

Осциллограф для установок по квантовой и молекулярной физике.

Осциллограф двух канальный 25MHz.Осциллограф, фпк, фпт, молекулярная, квантовая, физика, дополнительное, оборудование, учебное

Дополнительное оборудование для лабораторных установок по физике.

Описание:
Осциллограф UNI-T — прибор, предназначенный для исследования (наблюдения, записи, измерения) амплитудных и временны́х параметров электрического сигнала, подаваемого на его вход, либо непосредственно на экране.
Техническое описание
Дисплей: 320 х 240/64 цвета, 7 «ЖК-
Каналы: 2
Полоса пропускания: 25MHz
Частота дискретизации: 250 мс / с (макс.)
Время нарастания: не более 14ns
Глубина памяти: 25kpts
Waveform скорость захвата: не менее 2000wfms / с
Вертикальная чувствительность: 1mV/div ~ 20V/div
Время базе диапазон: 10ns/div ~ 50s/div
Режимы хранения: Установка, формы, растровые
Режимы синхронизации: по фронту, пульс, видео, альтернативное
Интерфейс: USB OTG, Pass / Fail
Размеры: 30,2 см х 13,7 см х 9,9 см
Вес: 2 кг.
Страна производства из предпоследней поставки была: Китай

Гарантия: 1 год

УСТАНОВКА ЛАБОРАТОРНАЯ «ЭФФЕКТ ЗЕЕМАНА». ФПК-14

Установки для изучения эффекта Зеемана. ФПК 14

ВВЕДЕНИЕ

Установка лабораторная Эффект Зеемана предназначена для изучения лабораторной работы Изучения эффекта Зеемана.

Описание устройства и принцип действия установки, технические характеристики, указания по эксплуатации и другие сведения, необходимые для обеспечения

учебная техника

УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ ЭФФЕКТА ЗЕЕМАНА ВВЕДЕНИЕ ФПК — 14

В связи с постоянным совершенствованием установки в схему и конструкцию могут быть внесены изменения не ухудшающие технические характеристики установки.

  НАЗНАЧЕНИЕ

Установка эффект Зеемана предназначена для проведения лабораторных работ по курсу «Квантовая физика» для инженерно-технических специальностей высшей школы.

Установка позволяет:

— исследовать явление эффекта Зеемана, путем наблюдения расщепление спектральных линий и энергетических уровней атомов кадмия под действием магнитного поля, — измерения зависимости энергии возбужденного атома кадмия от величины магнитного поля для продольного и поперечного эффекта. При проведении лабораторных работ установка может использоваться как самостоятельно, так и в составе лаборатории » Квантовая физика «

Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях при температуре окружающей среды от 283 до 308 °К и относительной влажности воздуха до 80 %. при температуре 298°К и атмосферном давлении от 84,4 до

106,7 кПа.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

Пределы установки тока в катушках электромагнита:

— для одной катушки, А, 1,6 -5,5

— для двух параллельных катушек, А 7,5— 11

Длина оптической скамьи, мм. 1000 ±5

Количество подвижных рейтеров 6

Диапазон изменения напряжения питания катушек электромагнита, В, не менее 8,5 – 26,0

Мощность спектральной кадмиевой лампы, Вт 15

Максимальная величина индукции магнитного поля между полюсами электромагнита, Тл, не менее 1, 1

Интерфейс видеокамеры USB 2,0

Питание установки сеть 220 В 50 Гц.

Габариты установки, мм, не более: 

Оптической скамьи 1000 х 200 х 300

Электромагита с поворотным столиком 300 х 200 х 350

Блока питания 300 х 250 х 170

Суммарная масса установки, кг, не более 40

Наработка на отказ, час, не менее 1000

Средний срок службы, лет, не менее 5

Установка предназначена для эксплуатации совместно с персональным компьютером с установленной операционной системой WINDOWS 

Прайс Квантовая (ядерная) физика

 

АТОМНАЯ КВАНТОВАЯ ФИЗИКА 2017

 

Описание:Учебная техника

                            установок по ядерной физике

Определение постоянной Ридберга (Планка) по спектру атома водорода. Без (МУМ) 110 000,00р.   Стоимость без монохроматора. Лабораторный модуль состоит из осветителя, содержашего две спектральные лампы (водородную и ртутную) и специально разработанного источника питания для ламп.
Установка для изучения спектра атома водорода с помощью дифракционной решетки. Определение постоянной Ридберга (Планка) по спектру атома водорода. Изучение основных приёмов работы с дифракционной решеткой. (без МУМ)
100 000,00р.   Лабораторный модуль представляет собой аналог учебной установки для изучения спектра атомарного водорода. Регистрация спектра производится визуально при помощи пропускающей дифракционной решетки с последующим расчетом длин волн в спектре посредством основных уравнений дифракционной решетки. Учебная установка дополнительно допускает постановку лабораторной работы по изучению дифракционной решетки. Для эксплуатации не требуется дополнительных приборов.
Установка для изучения спектра атома водорода с помощью учебного призменного спектроскопа. Определение постоянной Ридберга (Планка) по спектру атома водорода. Изучение основных приёмов работы с призменными оптическими приборами.
(без МУМ)
МОДЕЛЬ ДЛЯ ЭКСПЛУАТАЦИИ БЕЗ МОНОХРОМАТОРА
110 000,00р.  
Лабораторный модуль представляет собой аналог учебной установки для изучения спектра атомарного водорода. Регистрация спектра производится визуально при помощи учебного призменного спектроскопа. Для предварительной градуировки спектроскопа используется спектральная ртутная кварцевая лампа типа ДРСк-125. Для эксплуатации не требуется дополнительных приборов.

Изучение изотопической структуры спектральных линий. Изотопический сдвиг в спектре атомов водорода и дейтерия.
220 000,00р.   Учебный лабораторный комплекс представляет собой действующую модель, функционально не отличающуюся от своего базового научного прототипа для исследования изотопических сдвигов. Лабораторный комплекс позволяет воспроизводить спектры водорода и дейтерия, получать соответствующие спектрограммы излучения атомов с последующей обработкой спектров с помощью персонального компьютера. Установка конструктивно состоит из нескольких блоков, объединенных в единый комплекс: спектральной водородо-дейтериевой лампы, блока питания лампы, оптического приемника, моделирующего работу оптической части и системы обработки информации для ввода в ПК. Конструктивно комплекс предоставляет возможность пользователю работать с экспериментальной установкой с использованием персонального компьютера. Стоимость в комплекте с персональным компьютером и ПО для получения и обработки спектральных данных.
Изучение изотопической структуры спектральных линий. Изотопический сдвиг в спектре атомов водорода и дейтерия.
РУЧНОЙ ВАРИАНТ ИСПОЛНЕНИЯ
МОДЕЛЬ БЕЗ ПК
110 000,00р.   Учебный лабораторный комплекс представляет собой действующую модель, функционально не отличающуюся от своего базового научного прототипа для исследования изотопических сдвигов. Лабораторный комплекс позволяет воспроизводить спектры водорода и дейтерия, получать соответствующие спектрограммы излучения атомов. Сканирование спектров по длине волны и обработка осуществляется в ручном режиме. Установка конструктивно состоит из нескольких блоков, объединенных в единый комплекс: спектральной водородо-дейтериевой лампы, блока питания лампы, оптического приемника, моделирующего работу оптической части и системы сканирования спектра. Лабораторный комплекс является упрощенным вариантом учебной установки (ручной вариант исполнения).
Изучение спектров щелочных металлов на примере спектра атома натрия. Без МУМ 80 000,00р.   Стоимость без монохроматора. Возможно также использовать модуль для изучение тонкой структуры дублета натрия λ=589; 589,6 нм, для определение постоянной Ридберга по спектру натрия.
Атом в магнитном поле. Установка для изучения эффекта Зеемана.
140 000,00р.   Лабораторная демонстрационная установка позволяет воспроизводить простой и сложный эффект Зеемана. 

Установка позволяет:

 — исследовать явление эффекта Зеемана, путем наблюдения расщепление спектральных линий и энергетических уровней атомов кадмия под действием магнитного поля, — измерения зависимости энергии возбужденного атома кадмия от величины магнитного поля для продольного и поперечного эффекта. При проведении лабораторных работ установка может использоваться как самостоятельно, так и в составе лаборатории «Квантовая физика»

Установка предназначена для эксплуатации в закрытых, сухих, отапливаемых помещениях при температуре окружающей среды от 283 до 308 °К и относительной влажности воздуха до 80 %. при температуре 298°К и атмосферном давлении от 84,4 до 106,7 кПа.


Атом в магнитном поле. Установка для изучения эффекта Зеемана.
РУЧНОЙ ВАРИАНТ ИСПОЛНЕНИЯ
МОДЕЛЬ БЕЗ ПК
140 000,00р.   Лабораторный комплекс представляет собой действующую модель, функционально не отличающуюся от своего базового прототипа. Лабораторный комплекс позволяет воспроизводить простой и сложный эффект Зеемана, возникающий при помещении атомов в магнитное поле, получать соответствующие спектрограммы излучения атомов. Установка конструктивно состоит из нескольких блоков, объединенных в единый комплекс: спектральной лампы, блока питания спектральной лампы, катушек электромагнита и оптического приемника, моделирующего работу оптической части. Сканирование спектров по длине волны и обработка осуществляется в ручном режиме. Лабораторный комплекс является упрощенным вариантом учебной установки (ручной вариант исполнения).
Изучение спектров инертных газов.
(без МУМ)
110 000,00р.   Стоимость без монохроматора. В комплект входят осветитель, содержащий три газонаполненные спектральные трубки — He, Kr, Ne и высоковольтный источник питания трубок «Молния».
Изучение спектра атома ртути. Изучение тонкой структуры спектральных линий атома ртути. (без МУМ)
110 000,00р.   Стоимость без монохроматора. Изучается линейчатый спектр атома ртути, тонкая структура спектральных линий ртути. В качестве источника ртутного спектра используется ртутная спектральная лампа ДРСк-125.
Определение концентрации возбужденных атомов в газоразрядной плазме оптическим методом. Определение температуры газоразрядной плазмы методом сравнения интенсивностей спектральных линий.
130 000,00р.   Учебная установка позволяет изучить оптический метод диагностики высокотемпературной газоразрядной плазмы; провести определение концентрации возбужденных атомов ртути при разряде. Конструктивно учебная установка состоит из нескольких блоков: блок оптики — монохроматор учебный МУМ-01; фотоприемное устройство для регистрации интенсивности спектральных линий с настраиваемым усилителем; блок управления — система измерения и контроля необходимых параметров, содержащий устройство питания спектральных ламп. В комплекте с монохроматором, фотоприёмным устройством, усилителем фототока.
Исследование плазмы положительного столба тлеющего разряда методом зондов Ленгмюра.
125 000,00р.   Учебная установка предназначена для изучения плазмы тлеющего разряда в газе. Исследуются вольтамперные характеристики одиночных и двойных зондов Ленгмюра. Оценивается температура и концентрация электронов в газоразрядной плазме. Конструктивно установка состоит из нескольких блоков: длинной цилиндрической трубки, наполненной неоном при низком ~ 1 мм. рт. ст. давлении с выведенными зондами; высоковольтного высокочастотного блока питания трубки для создания тлеющего разряда; системы измерения и контроля необходимых параметров.
Изучение элементов туннельного эффекта с помощью полупроводникового туннельного диода. 85 000,00р.   Установка представляет собой законченный блок, основным элементом которого является исследуемый лабораторный туннельный диод. Теоретически и экспериментально оценивается коэффициент прохождения через потенциальный барьер.
Изучение элементов туннельного эффекта с помощью полупроводникового туннельного диода в динамическом режиме.
110 000,00р.   Установка выполнена аналогично лабораторному модулю. Дополнительно изготавливается блок синхронизации и развертки (настроенный цифровой генератор линейно изменяющегося напряжения). Цифровая схема измерения и управления установкой обеспечивает получение на экране осциллографа картинки, воспроизводящей ВАХ туннельного диода. В комплекте с осциллографом универсальным учебным.
Определение резонансного потенциала атома инертного газа (ртути). Опыт Франка и Герца.
МОДЕЛЬ ДЛЯ ЭКСПЛУАТАЦИИ С ОСЦИЛЛОГРАФОМ
90 000,00р.   В комплекте с осциллографом. Лабораторный модуль позволяет получить вольт-амперную характеристику прибора Франка и Герца (газонаполненного триода) на экране осциллографа с последующим определением резонансного потенциала атома. В комплекте с осциллографом.
Определение резонансного потенциала атома инертного газа (ртути). Опыт Франка и Герца.
МОДЕЛЬ ДЛЯ ЭКСПЛУАТАЦИИ БЕЗ ОСЦИЛЛОГРАФА
95 000,00р.   Аналогично экспериментальному блоку, модуль позволяет произвести снятие вольт-амперной характеристики газонаполненного триода. Характеристика снимается по точкам с использованием цифровых измерительных устройств.
Определение потенциала возбуждения и ионизации атомов ртути (инертного газа) методом электронного удара.
МОДЕЛЬ ДЛЯ ЭКСПЛУАТАЦИИ БЕЗ ОСЦИЛЛОГРАФА
100 000,00р.   В работе снимается зависимость сеточного и анодного тока тиратрона от величины ускоряющего напряжения сетка-катод. Установка является одной из модификаций опыта Франка и Герца.
Определение потенциала возбуждения и ионизации атомов ртути (инертного газа) методом электронного удара. МОДЕЛЬ ДЛЯ ЭКСПЛУАТАЦИИ С ОСЦИЛЛОГРАФОМ 120 000,00р.   Аналогично учебному модулю, установка позволяет получить вольт-амперную характеристику тиратрона. Блок измерения и управления обеспечивает развертку на экране осциллографа зависимости сеточного и анодного тока тиратрона от величины ускоряющего напряжения сетка-катод. В комплекте с осциллографом.
Изучение рассеяния электронов на атомах ксенона. Определение глубины и ширины потенциальной ямы с помощью эффекта Рамзауэра.
МОДЕЛЬ ДЛЯ ЭКСПЛУАТАЦИИ БЕЗ ОСЦИЛЛОГРАФА
120 000,00р.   Лабораторный модуль позволяет познакомится с сутью эффекта Рамзауэра, определить глубину и ширину потенциальной ямы для атомов ксенона. 
Изучение рассеяния электронов на атомах ксенона. Определение глубины и ширины потенциальной ямы с помощью эффекта Рамзауэра. МОДЕЛЬ ДЛЯ ЭКСПЛУАТАЦИИ С ОСЦИЛЛОГРАФОМ 120 000,00р.   Установка выполнена аналогично лабораторному модулю Дополнительно изготавливается блок синхронизации и развертки (настроенный цифровой генератор линейно изменяющегося напряжения). Цифровая схема измерения и управления установкой обеспечивает получение соответствующих характеристик газонаполненной лампы на экране осциллографа. В комплекте с осциллографом.
Изучение зависимости сопротивления металлов от температуры. Определение температурного коэффициента сопротивления металлов.
80 000,00р.   Модуль позволяет произвести измерение сопротивление металлического образца в зависимости от температуры. По построенному графику определяется температурный коэффициент сопротивления металла.
Изучение зависимости сопротивления полупроводника от температуры. Определение ширины запрещенной зоны полупроводника. 80 000,00р.   Производятся измерение сопротивления образца полупроводника при различных температурах. Согласно теоретическому описанию, производится определение ширины запрещенной зоны полупроводника.
Изучение внешнего фотоэффекта и определение постоянной Планка при помощи вольт-амперной характеристики вакуумного фотоэлемента. ДЛЯ ЭКСПЛУАТАЦИИ С МОНОХРОМАТОРОМ МУМ-1 140 000,00р.   Установка состоит из трех блоков — ртутного облучателя, монохроматора и приемника излучения (фотоэлемент). При различных длинах волн, строятся вольт-амперные характеристики лабораторного фотоэлемента. Далее производится определение постоянной Планка. В КОМПЛЕКТЕ С МОНОХРОМАТОРОМ МУМ-01
Изучение внешнего фотоэффекта и определение постоянной Планка при помощи вольт-амперной характеристики вакуумного фотоэлемента.
МОДЕЛЬ ДЛЯ ЭКСПЛУАТАЦИИ БЕЗ МОНОХРОМАТОРА
110 000,00р.   Установка состоит из двух блоков — облучателя и приемника излучения (фотоэлемент). В качестве облучателя для получения излучения с достаточной степенью монохроматичности применяются светодиоды со специально подобранными спектральными характеристиками, имеющими максимум в достаточно узком интервале длин волн. При различных длинах волн, строятся вольт-амперные характеристики лабораторного фотоэлемента. Далее, согласно методическому руководству, определяется постоянная Планка. Учебная установка является упрощенным аналогом установки.
Изучение внешнего фотоэффекта. Законы Столетова для фотоэффекта. 120 000,00р.   Представляет собой ещё один упрощенный вариант лабораторного комплекса.
Аналогично установки, позволяет познакомится с сутью явления фотоэффекта и с принципами работы фотоэлементов. Снимаются вольт-амперные характеристики фотоэлемента при различных освещенностях, определяется чувствительность фотоэлемента. Постоянная Планка в данной модификации опыта не определяется.
Определение работы выхода электронов из металла при помощи вольт-амперной характеристики вакуумного диода. 120 000,00р.   Установка позволяет используя так называемый «Метод прямых Ричардсона» оценить работу выхода электронов из материала катода (вольфрама).
Определение удельного заряда электрона методом магнетрона.           90 000,00р.   Установка позволяет при помощи специальной лампы с цилиндрическими катодом и анодом изучить движение электрона в скрещенных магнитном и электрическом поле. Установка позволяет при помощи специальной лампы с цилиндрическими катодом и анодом изучить движение электрона в скрещенных магнитном и электрическом поле. По так называемой «сбросовой» характеристики магнетрона оценить значение удельного заряда электрона.
Определение заряда электрона с помощью эффекта Шотки. 80 000,00р.   Установка предназначена для определения заряда электрона с помощью эффекта Шотки. В качестве объекта исследования используется вакуумный диод с оксидным вольфрамовым катодом коаксиальной геометрии (анод и катод представляют собой соосно расположенные цилиндры). Модуль может быть выполнен в двух вариантах — исследования ВАХ в статическом режиме по точкам и наблюдением ВАХ в динамическом режиме на экране осциллографа
Изучение закона Стефана-Больцмана. Определение зависимости энергетической светимости нагретого тела от температуры. 120 000,00р.   Установка знакомит с понятием абсолютно черного тела. Изучается распределение интегральной энергетической светимости нагретой вольфрамовой нити от температуры. Экспериментально проверяется закон Стефана-Больцмана, определяется константа Стефана-Больцмана.
Определение ширины запирающего слоя p-n перехода и концентрации примеси в области лавинного пробоя  80 000,00р.   Работа заключается в изучении механизма лавинного пробоя p-n перехода. Определяется ширина запирающего слоя перехода, а также концентрация примесей в полупроводнике.
Фотопроводимость полупроводников. Изучение внутреннего фотоэффекта с помощью полупроводникового фотодиода.
110 000,00р.   Лабораторный модуль предназначен для изучения основных принципов работы полупроводниковых фотодиодов и рекомендуется для проведения демонстрационных и лабораторных занятий по разделу «Фотопроводимость полупроводников». Установка позволяет провести исследование внутреннего фотоэффекта в полупроводнике (исследуемом образце фотодиода), знакомит с особенностями работы фотодиода в вентильном и фотодиодном режиме работы. Учебная установка конструктивно состоит из осветителя с источником света с регулируемой яркостью, объекта исследования — полупроводникового фотодиода, стабилизированного источника питания и цифровой системы управления и измерения необходимых параметров.

Фотопроводимость полупроводников. Изучение внутреннего фотоэффекта с помощью полупроводникового фоторезистора.
100 000,00р.   Лабораторный модуль предназначен для изучения основных принципов работы полупроводниковых фоторезисторов и рекомендуется для проведения демонстрационных и лабораторных занятий по разделу «Фотопроводимость полупроводников». Учебная установка конструктивно состоит из осветителя с источником света с регулируемой яркостью, объекта исследования — полупроводникового сернисто-кадмиевого фоторезистора, стабилизированного источника питания и цифровой системы управления и измерения необходимых параметров. Снимается вольт-амперная характеристика фоторезистора, получаемая при различных значениях освещенности и определяется его чувствительность.
Изучение электронно-дырочного перехода. Изучение вольт-амперной характеристики p-n перехода. 80000,00 р. модель для работы без использования осциллографа 65000,00 р. модель для работы с осциллографом   Лабораторный модуль позволяет изучить основные принципы работы полупроводниковых диодов, получить прямую и обратную ветви вольт — амперной характеристики диода, сделать вывод о возможности применения p-n перехода в выпрямительных схемах. Оцениваются основные параметры перехода — ток насыщения и потенциальный барьер перехода. Модуль может быть выполнен как для работы с осциллографом в динамическом режиме так и для снятия характеристики в статическом режиме по точкам
Определение заряда электрона с помощью дробового эффекта. 100 000,00р.   Учебная установка предназначена для наблюдения дробового эффекта при работе вакуумного диода и определения с помощью него заряда электрона. Конструктивно состоит из объекта исследования — вакуумного диода с цилиндрическим анодом и катодом, колебательного контура и системы измерения дробового шума диода.
Полупроводниковые оптические генераторы. Определение постоянной Планка на основе измерения напряжения включения полупроводниковых излучающих светодиодов и полупроводникового лазера. 100 000,00р.   Лабораторный модуль позволяет изучить основные принципы работы полупроводниковых светодиодов, получить вольт — амперные характеристики светодиодов, излучающих различные длины волн. По полученным данным, определяется напряжение, при котором p-n-переход начинает испускать световые кванты и оценивается величина постоянной Планка. Измерительный стенд представляет собой набор светодиодов, излучающих различные длины волн, источник стабилизированного тока и цифровую схему управления и измерения необходимых в ходе эксперимента параметров.
Определение ширины запрещённой зоны полупроводника по фотоэмиссии.МОДЕЛЬ ДЛЯ ЭКСПЛУАТАЦИИ С МОНОХРОМАТОРОМ МУМ-01 150 000,00р.   Учебная установка позволяет получить с помощью дифракционного монохроматора МУМ-01 профиль эмиссионной линии излучения полупроводникового лазера и светодиода. По полученным экспериментальным данным рассчитывается ширина запрещенной зоны эмиссионного участка полупроводника и светодиода. Конструктивно учебный модуль состоит из нескольких блоков, совмещённых в едином комплексе: монохроматора МУМ-01, стабилизированного блока питания для лазера и светодиодов и блока измерения интенсивности фотоэмиссии. Интенсивность излучения измеряется фотодатчиком, размещенным на выходной щели монохроматора, сигнал с которого подаётся на цифровой микроаперметр с вмонтированной измерительной схемой. Микроамперметр регистрирует фототок, который пропорционален интенсивности спектральной линии. Стоимость в комплекте с монохроматором МУМ-01.
Исследование спектров поглощения и пропускания света.МОДЕЛЬ ДЛЯ ЭКСПЛУАТАЦИИ С МОНОХРОМАТОРОМ МУМ-01 150 000,00р.   Лабораторный модуль предназначен для исследования спектральных характеристик различных светофильтров. По виду спектральной характеристики, согласно методическому руководству оцениваются основные параметры светофильтров. Лабораторный модуль состоит из нескольких настроенных узлов, объединённых в единый комплекс:


— монохроматор МУМ-01;
— узел излучателя;
— фотоприемный узел;
— цифровой блок обработки и измерения сигнала; — стабилизированный блок питания;
Стоимость в комплекте с монохроматором МУМ-01.

Монохроматор учебный МУМ-1 110 000,00р.   Предназначен для выделения монохроматического излучения, исследования источников и приемников излучения, решения аналитических задач и других работ в области спектра 200-800 нм. Рабочий диапазон длин волн, нм — 200..800. Оптическая система допускает дуплет натрия 589,0 — 589,6.
ПОИСК ПО САЙТУ
Все страницы
Вверх
Яндекс.Метрика © 2020    Компания ООО "УЧЕБНАЯ ТЕХНИКА". ИНН 7724306437 Телефон: +7 (495) 724-93-09 E-mail: Lab.texnika@yandex.ru 115573 г. Москва, ул. Ореховый бульвар дом 22   //    Войти
Paste your AdWords Remarketing code here